Baryon resonances as hadronic molecular states

D. Jido (Yukawa Institute, Kyoto)

in collaboration with

Y. Kanada-En'yo (YITP)

 $\Lambda(1405)$ in few-body systems

three-body quasibound states

N*

Introduction

Baryon resonances : decay with strong interactions

in understanding the structure of baryon resonances

cluster picture

MB

shell model picture

- difference in range of dynamics
- meson cloud effects

D. Jído

Hadronic molecular states

- system of multiple hadrons described by hadron dynamics typical constituents are ground states hadrons

octet baryons: N, Λ , Σ , Ξ octet meson: π , K, η

mesons are key ingredients (potential picture ok ?)

- constituents keep their identity typical binding energy ~ 10-20 MeV weakly bound system decay width ~ 50 MeV (strong interactions)

- spatially extended (large size) typically more than I fm

- softer form factors

strong energy dependence in production

quasi-bound state

少数系研究会

quark degrees of freedom may be less important

$\Lambda(1405)$ as Quasi-bound state of K^{bar}N

 $\Lambda(1405)$ $J^{\pi} = 1/2^{-}, I = 0, S = -1, Q = 0$

- most established resonance, seen in many exp. clearly

- mass : 1406.5 \pm 4.0 MeV, (below K^-p threshold)
- width : 50 ± 2 MeV (PDG)

- decay mode $\Lambda(1405) \rightarrow (\Sigma \pi)_{I=0}$ 100 % S-wave

 $\Lambda(1405)$ is composed mostly of meson-baryon components.

Hyodo, Jido, Hosaka, PRC78, 025203 ('08)

Double pole structute of \land (1405)

DJ, Oller, Oset, Ramos, Meissner NPA725, 181 ('03)

$\Lambda(1405)$ is a superposition of two states having different properties.

there are two attractive channels

group theoretically

physically

SU(3) singlet and octet

 $K^{\text{bar}}N$ and $\pi\Sigma$ [Hyodo, Weise, PRC77, 035204 (08)]

Implication of double pole structure

 $\Lambda(1405)$ spectrum is dependent on channels

Resonance position in K^{bar}N channel ~1420 MeV with narrower width

instead of 1405 MeV

This 15 MeV difference is important for K^{bar}N interactions

Λ(1405) in few-body systems ~hadronic molecule states with kaons~

three-body quasibound states $|=1/2, J^{P}=1/2^{+}$

in collaboration with Y. Kanada-En'yo (YITP, Kyoto)

References

Y. Kanada-En'yo and D. Jido, Phys. Rev. C78, 025212 (2008)

D. Jido and Y. Kanada-En'yo, Phys. Rev. C78, 035203 (2008)

D. Jído

Peculiarities of K meson

small binding energy ~ 10-30 MeV small kinetic energy

- heavy particle compared with kinetic energy

half of nucleon mass

cf. pion $m_{\pi} \approx 140 \text{ MeV}$

non-relativisitc potential model

isospin averaged mass $m_K = 495.7 \text{ MeV}$

 $m_N = 938.9 \text{ MeV}$

- Nambu-Goldstone boson

smaller mass compared with typical hadron mass scale

strong s-wave attraction in K^{bar}N

chiral effective theory momentum expansion

s-wave int. proportional to K energy

Kaons are different from pions in the energies of our interest !!

Hadronic molecular states in two-body sys.

Assumption:

$\Lambda(1405)$: one of the historical examples	$\bar{K}N$ 1435 MeV $\Lambda(1405)$ $\pi\Sigma$ 1331 MeV
have been considered as a quasi-bound state of K ^{bar} N since late 50's Recently this idea has been developed to light nuclear system	Dalitz, Tuan, PRL 2, 425 ('59) Akaishi, Yamazaki, PRC 65, 044005 ('02)
$\Lambda(1405)$ is described as a superposition of two states.	DJ, Oller, Oset, Ramos, Meissner NPA725, 181 ('03)
fo(980), ao(980) : the candidates of KK ^{bar} QBS scalar mesons fo(980) with I=0	Weinstein, Isgur, PRL 48, 659 ('90) (300) ('90)

Interactions in KK^{bar}N system

N 14		I=0	=	threshold
IN [*]	$\bar{K}N$	$\Lambda(1405)$	weak attraction	1434.6 MeV
RK	$K\bar{K}$	$f_0(980)$	$a_0(980)$	991.4 MeV
	KN	very weak	strong repulsion	1434.6 MeV

Interactions in K^{bar}K^{bar}N system

Formulation for three-body system: $K\bar{K}N$ and $\bar{K}\bar{K}N$

non-relativistic potential model

Hamiltonian

 $H = T + V_{\bar{K}N}(r_1) + V_{KN}(r_2) + V_{K\bar{K}}(r_3),$ two-body effective interactions **local potentials** obtained by s-wave two-body scattering Gaussian potential $V(r) = U \exp \left[-(r/b)^2\right]$ complex potentials to implement coupled-channels effects ex: $\bar{K}N \rightarrow \pi\Sigma$ no three-body interactions no transitions to two hadrons $\bar{K}\bar{K}N \rightarrow MB$ will be suppressed in hadronic molecular states

recipe

- solve Schrödinger eq. without imaginary potential st : obtain wavefunction Ψ and real part of energy
- 2nd: estimate imaginary part of energy $E^{Im} = \langle \Psi | Im V | \Psi \rangle$.

Effective interactions

$$\bar{K}N \qquad V_{\bar{K}N} = U_{\bar{K}N}^{I=0} \exp\left[-(r/b)^2\right] + U_{\bar{K}N}^{I=1} \exp\left[-(r/b)^2\right]$$

Hyodo-Weise potential (HW-HNJH)

PRC77,035204 (08)

derived from chiral unitary approach energy dependent, but small in energy of interest resonance position ~ 1420 MeV (double pole structure) interaction range b= 0.47 fm

Akaishi-Yamazaki potential (AY)

PRC64,044005 (02)

obtained phenomenologically

I=0 : reproduce Λ(I405) as quasi-bound state of K^{bar}N mass: I405 MeV, width: 40 MeV

I=I: scattering and Konic atom data

interaction range b= 0.66 fm

Effective interactions

Gaussian potential
$$V(r) = U \exp \left[-(r/b)^2\right]$$

$\bar{K}N$	HW-HNJH and AY potentials
attractive	binding energy : 11 MeV (HW), 31MeV (AY)
	K ^{bar} -N distance : I.9 fm (HW), I.4 fm (AY)

reproduce masses and widths of t_0 and a_0
--

attractive

KK

mass: 980 MeV, width: 60 MeV reproduced binding energy : II MeV K-K^{bar} distance : **2.1 fm**

PDG

mass: 980±10 MeV width: 40~100 MeV mass: 984±1.2 MeV width: 50~100 MeV

```
KN
              reproduce scattering lengths
                                              a_{KN}^{I=0} = -0.035 \text{ fm}
              experimental data
repulsive
                                               a_{KN}^{I=1} = -0.310 \pm 0.003 \text{ fm}
```

Result KK^{bar}N N* around 1900 MeV

 $K\bar{K}N$ is bound blow thresholds of $\Lambda(1405)$ +K, a₀(f₀)+N

- loosely bound system

binding energy	width
HW: 19 MeV	88 MeV
AY: 39 MeV	98 MeV

sum of those of isolated two-particle systems

coexistence of two quasi-bound states keeping their characters

∧(1405)+K a₀(980)+N

- main decay modes

D. Jído

 $\pi \Sigma K$ from Λ (1405)

 $\pi\eta N$ from a₀(980)

DJ, Y. Kanada-En'yo, **PRC78, 035203 (2008)**

two-body systems	HW	AY
\bar{K} -N B.E. (MeV)	11	31
width (MeV)	44	20
K - \overline{K} B.E. (MeV)	11	11
width (MeV)	60	60
\bar{K} -N distance (fm)	1.9	1.4
K - \overline{K} distance (fm)	2.1	2.2

Result KK^{bar}N N* around 1900 MeV

 $K\bar{K}N$ is bound blow thresholds of $\Lambda(1405)$ +K, a₀(f₀)+N

- loosely bound system

binding energy	width
HW: 19 MeV	88 MeV
AY: 39 MeV	98 MeV

sum of those of isolated two-particle systems

spacial structure

hadron-hadron distances are comparable with nucleon-nucleon distances in nuclei

r.m.s radius (1.7 fm) is larger than that of ⁴He (1.4 fm)

mean hadron density: 0.07 hadrons/(fm³)

DJ, Y. Kanada-En'yo, **PRC78, 035203 (2008)**

two-body systems	HW	AY
\bar{K} -N B.E. (MeV)	11	31
width (MeV)	44	20
K - \overline{K} B.E. (MeV)	11	11
width (MeV)	60	60
\bar{K} -N distance (fm)	1.9	1.4
K - \overline{K} distance (fm)	2.1	2.2

$\bar{K}\bar{K}N$ system with I=1/2, J^P=1/2⁺ (Ξ^*)

Once $\Lambda(1405)$ forms in a K^{bar}N system with I=0, another K^{bar} and N has dominantly I=I component, which is weak attraction. This is not enough to overcome the repulsive K^{bar}K^{bar} interaction.

very weak binding binding energy ~ 2 MeV

Y. Kanada-En'yo, DJ, **PRC78, 025212 (2008)**

Decay properties of Kaonic nuclei

活発なK中間子原子核構造・生成研究

picture

Kbar と核子で A(1405) が作られ、 核内でへ(1405)が崩壊

Sekihara, DJ, Y. Kanada-En'yo, in progress

A(1405) がK中間子吸収の doorway state

K中間子原子核を A* ハイパー核として見る

この描像が正しいかどうかは、核中でΛ*がどれだけ個性を保っているかによる

- ハドロン分子状態の束縛エネルギー:数十MeV より深い束縛なら、別のピクチャーが必要
- 理論的には、ハイパー核のテクニックが使える

崩壊モードから性質を調べることができないか?

特に、nonmesonic (nonpionic) decay (最も基本的な多体効果)

Summary

keyword : hadronic molecular state Λ(1405) = Quasi-bound state of K^{bar}N

- $\Lambda(1405)$ in few-body systems

 $\Lambda(1405)$ keeps its identity in few-body systems nuclear physics

potential picture, coupled channel approach

Decay properties of Kaonic nuclei
 Kaonic nuclei = Λ* hypernuclei
 decay pattern of non-mesonic decay

BACKUP SLIDES

Λ(1405) as Quasi-bound state of K^{bar}N

 $\Lambda(1405)$ $J^{\pi} = 1/2^{-}, I = 0, S = -1, Q = 0$

- most established resonance, seen in many exp. clearly

- mass : 1406.5 ± 4.0 MeV, (below K^-p threshold)
- width : 50 ± 2 MeV (PDG)

- decay mode $\Lambda(1405) \rightarrow (\Sigma \pi)_{I=0}$ 100 % S-wave

$\Lambda(1405)$ has mostly meson-baryon components.

Result KK^{bar}N

- main decay modes

 $\pi \Sigma K \quad \text{from } \Lambda(1405)$ $\pi \eta N \quad \text{from } a_0(980)$

- KN repulsion important

Without the KN repulsion, the quasi-bound state would be more bound and have much larger width.

Parameter set	(A)	(A)	(B)	(B)
$V_{\bar{K}N}$	HW-HNJH	HW-HNJH	AY	ÂŶ
V _{KN}	On	Off	On	Off
Re <i>E</i>	-19	-39	-41	-57
$\langle T \rangle$	169	282	175	227
(ReV)	-188	-320	-216	-284
Im <i>E</i>	-44	-72	-49	-63
$\langle \text{Im} V_{\mathcal{K}N}^{I=0} \rangle$	-17	-30	-19	-23
$\langle \text{Im} V_{\mathcal{K}N}^{I=1} \rangle$	-1	0	0	0
$\langle \text{Im} V_{K\bar{K}}^{I=0} \rangle$	-1	-10	-4	-10
$\langle \text{Im} V_{K\bar{K}}^{I=1} \rangle$	-25	-31	-25	-31
$\langle T_{\vec{K}N} \rangle$	113	185	131	157
$\langle \text{Re} V_{\mathcal{K}N}^{I=0} \rangle$	-87	-152	-139	-162
$\langle \text{Re} V_{\mathcal{K}N}^{I=1} \rangle$	-2	0	0	0
$\operatorname{Re}\mathcal{E}_{RN}$	25	33	-9	-4
$\mathrm{Re}\mathcal{E}_{\bar{K}N}^{l_1=0}$	-6	-4	-28	-27
$\langle T_{K\bar{K}} \rangle$	104	162	86	115
$\langle \text{Re} V_{K\bar{K}}^{I=0} \rangle$	-4	-42	-11	-31
$\langle \text{Re} V_{K\bar{K}}^{I=1} \rangle$	-101	-127	-75	-92
$\mathrm{Re}\mathcal{E}_{K\bar{K}}$	-1	-7	-1	-7
$\langle T_{KN} \rangle$	59	108	55	83
$\langle \text{Re} V_{KN}^{I=0} \rangle$	0	0	0	0
$\langle \text{Re} V_{KN}^{I=1} \rangle$	6	0	10	0
$\mathrm{Re}\mathcal{E}_{KN}$	65	108	65	83

13

$K^- d \rightarrow \Lambda(1405) n$ in chiral unitary model

in collaboration with **E. Oset** (Valencia) and **T. Sekihara** (Kyoto)

to confirm the $\Lambda(1405)$ resonance position in K^{bar}N channel

 $\Lambda(1405)$ spectrum in K^{bar}N channel

 $\bar{K}N \to \Lambda(1405)$

 $K^- d \to \Lambda(1405)n$

DJ, Oset, Sekihara, in preparation

D. Jído

Subthreshold properties of $K^{bar}N$

Braun et al. NPB129, 1, ('77)

DJ, Oset, Sekihara, in preparation

chiral unitary model

 Λ^* :T-matrix by ChUM

K momentum: 800 MeV/c

$$K^- d \to \pi^+ \Sigma^- n$$

DJ, Oset, Sekihara, in preparation

 $K^-d \rightarrow \Lambda(1405)n$ cross section ~380 µb (exp. 410 ± 100 µb)

DJ, Oset, Sekihara, in preparation

 $K^-d \rightarrow \Lambda(1405)n$ cross section ~380 µb (exp. 410 ± 100 µb)