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People have focused on

K-pp, “a prototype of Kbar nuclei” 
But, different theoretical studies give different results from each other…But, different theoretical studies give different results from each other…
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Constrained by experimental data. 
… KbarN scattering data, 

Kaonic hydrogen atom data, 
“Λ(1405)” etc.



1. Introduction
Experiments concerned to this subject…
• FINUDA (Run 2) • Re-analysis of KEK E549

• DISTO collaboration

- p + p -> K+ + Λ + p @ 2.85GeV
- Λp invariant mass 

T. Yamazaki’s talk at EXA’08

- K- stopped on 4He target
- Λp invariant mass 

T. Suzuki et al 
(KEK-PS E549 collaboration), 
arXiv:0711.4943v1[nucl-ex]

H. Fujioka’s talk 
(FINUDA collaboration)
at PANIC’08

- K- absorption on 
various targets

- Λp invariant mass 



Av18 NN potentialAv18 NN potential
… … a realistic NN potential a realistic NN potential 

with strong repulsive core.with strong repulsive core.

KKbarbarN potential based on N potential based on ChiralChiral SU(3) theorySU(3) theory

VariationalVariational methodmethod
… Investigate various properties … Investigate various properties 

with the obtained wave function.with the obtained wave function.

…… Well describe S=Well describe S=--1 meson1 meson--baryon scattering baryon scattering 
and dynamical generation of  and dynamical generation of  ΛΛ(1405)(1405)

1. Introduction



2．Model wave fucntion
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Thanks, 
Akaishi-san!

Model wave function ー Simple Correlated Model (Revised) ー

10 ,
2

J Tπ −= =
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NN in           :  1E,  TN=1            K-pp   

NN in           :  1O,  TN=0
1Φ

0Φ

NN correlation
is directly treated.



2. NN potential
A realistic NN potential … Av18 potential

• Use one-pion-exchange potential (Central and Spin-Spin) and 
L2 potentials in addition to phenomenological central term 

(= repulsive core).

1E1E 1O1O

Strong repulsive core
(3 GeV)

Strong repulsive core
(3 GeV)

Central potential



２．Model

NN potential … Tamagaki potential
Effective KbarN potential … Akaishi-Yamazaki potential 

Influence of the improvement

TN=1 onlyTN=1 onlyTN=1 + TN=0TN=1 + TN=0

SCM ver2 SCM ver1 ATMS
Cmix Finite Zero ---

B. E. 51.4 39.0 48
Γ(K bar N →π Y ) 61.0 60.0 61

B(K) 80.0 65.8 68
Nucl. E 28.7 26.8 20

Kinetic 162.4 147.0 167
NN pot -19.2 -19.8 -19
KbarN pot -194.6 -166.2 -196

Rel (NN) 1.83 1.75 1.90
Rel (KN) 1.55 1.54 1.57

Mixing ratio 5.9% 0.0%
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Influence of the improvement
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B(K) 80.0 65.8 68
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NN pot -19.2 -19.8 -19
KbarN pot -194.6 -166.2 -196

Rel (NN) 1.83 1.75 1.90
Rel (KN) 1.55 1.54 1.57

Mixing ratio 5.9% 0.0%

Additional KbarN attractionAdditional KbarN attraction



3. Local KbarN potential based on Chiral SU(3)
T. Hyodo and W. Weise, PRC77, 035204(2008)

11 1 11
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: Effective local potential
Non-relativistic  /  Single Channel

• Single channel
… only KbarN channel, πΣ is eliminated.

• Energy dependent and Complex potential

• Local, Gaussian form

. . . .Ch U Ch U
ij ij ik k kjT V V G T= + : Chiral unitary

Relativistic  /  Coupled Channel

. .
11
Ch UT

Effective KEffective KbarbarN potentialN potential …
reproduce the scattering KbarN amplitude obtained with Chiral unitary model  

… T-matrix for KbarN channel



3. Local KbarN potential based on Chiral SU(3)
I=0 KbarN scatteing amplitude

Chiral unitary; T. Hyodo, S. I. Nam, D. Jido, and A. Hosaka, Phys. Rev. C68, 018201 (2003)

Chiral UnitaryChiral Unitary

1420

Resonance position in I=0 KbarN channel

In Chiral unitary model, 

1420 MeV1420 MeV
not 1405 MeV !

Effective potentialEffective potential



3. Local KbarN potential based on Chiral SU(3)

Four Four ChiralChiral unitary modelsunitary models:

• “ORB”      E. Oset, A. Ramos, and C. Bennhold, Phys. Lett. B527, 99 (2002)
• “HNJH”    T.Hyodo, S. I. Nam, D. Jido, and A. Hosaka, Phys. Rev. C68, 018201 (2003)
• “BNW”     B. Borasoy, R. Nissler, and W. Weise, Eur. Phys. J. A25, 79 (2005)
• “BMN”      B. Borasoy, U. G. Meissner, and R. Nissler, Phys. Rev. C74, 055201 (2006)

I=0 channel I=1 channel

1420



3．Self-consistency of kaon’s energy

( )KN SV s−Self-consistency for anti-kaon’s energy

Hamiltonian ( )Re CMNN KN SH T V V s T−⎡ ⎤= + + −⎣ ⎦

Controlled by “Anti-kaon’s binding energy”

( ) { }NuclB K H H≡ − − NuclH : Hamiltonian of nuclear part

treated perturbatively.( )Im KN SV s−⎡ ⎤
⎣ ⎦

( )
( ) 2

N K
N

N K

M m B K
s M

M m B K
ω

+ −⎧⎪= + = ⎨ + −⎪⎩

Try two ansatz for        . s

( ) ( ) ( )
2

1 2 2NN C ss LV V r V r V rσ σ= + ⋅ + L
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Kbar field surrounds two nucleons 
which are almost static. 

Kbar

N N

( )Km B Kω = −

( ) ( ) ( )
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3．Self-consistency of kaon’s energy
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N N
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Kbar is bound by each nucleon 
with B(K)/2 binding energy.

( ) 2B K



4. Result with effective s-wave KbarN potential
ORB,   HNJH
BNW,   BMN

( )
( ) 2

N K

N K

M m B K
s

M m B K
+ −⎧⎪= ⎨ + −⎪⎩

×

Total B. E.      :   20  ± 3  MeV
Γ（KbarN→πY） :   40  ～ 70 MeV
Total B. E.      :   20  ± 3  MeV
Γ（KbarN→πY） :   40  ～ 70 MeV

… Shallow binding
… Not so dependent on

chiral unitary models

NN distance      =   2.2 fm
KbarN distance = 2.0 fm
NN distance      =   2.2 fm
KbarN distance = 2.0 fm

～ NN distance in normal nuclei

I=0,1 I=0 KbarN distance = 1.82 fm
I=1 KbarN distance = 2.33 fm
I=0 KbarN distance = 1.82 fm
I=1 KbarN distance = 2.33 fm

… I=0 KbarN potential is more attractive 
than I=1 one.

Kbar

N N



Structure of K-pp KbarN potential based on “HNJH”
“Corrected”, ( )N Ks M m B K= + −

Density distribution
KbarN pair in K-pp vs Λ(1405)

( )2 Normalized
KNr rρ For comparison,

All densities are normalized to 1.
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I=1 in K-pp

Very different.
The I=1 component 
distributes widely.



Structure of K-pp KbarN potential based on “HNJH”
“Corrected”, ( )N Ks M m B K= + −

Density distribution
KbarN pair in K-pp vs Λ(1405)

( )2 Normalized
KNr rρ For comparison,

All densities are normalized to 1.
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Isolated  I=0 KbarN
… Λ(1405)

Rather similar.

ΛΛ(1405) almost survives in K(1405) almost survives in K--pp!pp!



5. Other effects

I.  Dispersive correction I.  Dispersive correction 
(Effect of imaginary part)(Effect of imaginary part)

II.  pII.  p--wave Kwave KbarbarN potentialN potential

III.  Two nucleon absorptionIII.  Two nucleon absorption

Estimate other possible effects, perturbatively…



I.  Dispersive correction ( Effect of imaginary potential )

Two-body system (I=0 KbarN) case

Lippmann-Schwinger eq. 
with 

the complex potential

Schroedinger eq. 
with 

only the real part
( )0 ,Eff

IU r s=

B. E. ～ 10 MeVB. E. ～ 15 MeV

1420

Complex



I.  Dispersive correction ( Effect of imaginary potential )

Two-body system (I=0 KbarN) case

Lippmann-Schwinger eq. 
with 

the complex potential

Schroedinger eq. 
with 

only the real part
( )0 ,Eff

IU r s=

B. E. ～ 10 MeVB. E. ～ 15 MeV

Dispersive correction for KbarN system
～ +5 MeV to B. E.

Dispersive correction for KbarN system
～ +5 MeV to B. E.

Dispersive correction for KbarNN
+6 ～ +18 MeV

×2
Considering
Four variants of models…



II.  P-wave KbarN potential
• Estimate its contribution perturbatively.
• Derived from “Full” scattering volume.

( ) ( ) ( )2

2, 3/ 2 3

1 4 1, exp
2

K N
KN P wave K N KN
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sv C aM a
πω ω
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Re Cp

Im Cp

Re VKN,P ～ +3 MeV

…small and repulsive 

For ap= 0.4～0.9 fm,

Γp-wave = -2 Im VKN,P
= 10 ～ 35 MeV

R. Brockmann, W. Weise and L. Tauscher, 
Nucl. Phys. A 308, 365 (1978)



III.  Two nucleon absorption

• For mean-field model
… no correlation between two nucleons

• Contact interaction

N

N

Y (N)

N (Y)

Kbar

J. Mares, E. Friedman and A. Gal, 
Nucl. Phys. A 770, 84 (2006)



III.  Two nucleon absorption

• For mean-field model
… no correlation between two nucleons

• Contact interaction

N

N

Y (N)

N (Y)

Kbar

Three-body 
correlation density

Gaussian-type
Interaction for NN

J. Mares, E. Friedman and A. Gal, 
Nucl. Phys. A 770, 84 (2006)
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III.  Two nucleon absorption

• For mean-field model
… no correlation between two nucleons

• Contact interaction

N

N

Y (N)

N (Y)

Kbar

N

N

Y (N)

N (Y)

KbarThree-body 
correlation density

Gaussian-type
Interaction for NN

In our model, particles are 
strongly correlated.
The NN can’t touch each other, 
due to the strong NN repulsion!!

• Finite range interaction (between NN)

J. Mares, E. Friedman and A. Gal, 
Nucl. Phys. A 770, 84 (2006)



III.  Two nucleon absorption

• For mean-field model
… no correlation between two nucleons

• Contact interaction

N

N

Y (N)

N (Y)

Kbar

N

N

Y (N)

N (Y)

KbarThree-body 
correlation density

Gaussian-type
Interaction for NN

In our model, particles are 
strongly correlated.
The NN can’t touch each other, 
due to the strong NN repulsion!!

for  a = 0.6 fm, 
B0 = 0.85 ～ 1.5 fm4

4 12 MeVabsΔΓ = ∼
for  a = 0.6 fm, 

B0 = 0.85 ～ 1.5 fm4

• Finite range interaction (between NN)

J. Mares, E. Friedman and A. Gal, 
Nucl. Phys. A 770, 84 (2006)



6．Summary

Structure of K-pp
NN distance in K-pp is smaller than that of deuteron, 
rather comparable to that in normal nuclei. 

NN distance = ～2.2 fm
KbarN distance = ～2.0 fm

The I=0 KbarN component in K-pp is found to be very similar to Λ(1405). 

Contribution of other effects

• Dispersive correction:      +6 ～ +18MeV to B.E. 
• p-wave KbarN potential:            ～ -3MeV to B.E. ,            10 ～ 35MeV  to width
• Two nucleon absorption:                                                     4 ～ 12MeV  to width

We studied K-pp with a variational method, using a realistic NN potential (Av18) 
and a Chiral SU(3)-based KbarN potential. 

We tried four variants of Chiral unitary models and two ansatz of KbarN energy 
in the three-body system. However, the result doesn’t depend so much on them. 
Total binding energy and mesonic decay width are in the small window:

Binding energy and mesonic decay width of K-pp

Total binding energy and mesonic decay width are in the small window:

Total Binding energy = 20 ± 3 MeV
Γ (KbarN → πY) = 40  ～ 70 MeV

… Very shallow binding
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We studied K-pp with a variational method, using a realistic NN potential (Av18) 
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We tried four variants of Chiral unitary models and two ansatz of KbarN energy 
in the three-body system. However, the result doesn’t depend so much on them. 
Total binding energy and mesonic decay width are in the small window:

Binding energy and mesonic decay width of K-pp

Total binding energy and mesonic decay width are in the small window:

Total Binding energy = 20 ± 3 MeV
Γ (KbarN → πY) = 40  ～ 70 MeV

… Very shallow binding

By rough estimation,  
Total Binding energy =    20  ～ 40 MeV
Γ ( total ) =    55  ～ 120 MeV

Λ(1405) almost survives in K-pp.
But, such a state is very short-lived.



6．Comment

• Difference from Faddeev calculation with a separable KbarN potential 
constrained with Chiral SU(3) theory

by Dr. Ikeda and Prof. SatoTotal B. E.    = 79 MeV, 
Decay width = 74 MeV

Separable potential?

Non-relativistic (semi-relativistic) vs relativistic?

Energy dependence of two-body system (KbarN) in the three-body system (KbarNN)?  

Important role of πΣN thee-body dynamics?

…???

Y. Ikeda and T. Sato, arXiv:0809.1285 



6．Comment
• What is the object measured experimentally?

Just a bound state of K-pp, 
should πΣN be included???

Even if the experimental result is not an artifact, 
only what we can say at the moment from this 
is 
“There is some object with B=2, S=-1, charge=+1”…

• Since the signal position is very close to π+Σ+N threshold, 
it is more natural that the observed state is mainly the bound state of πΣN?

• How to distinguish which is the dominant component, K-pp or πΣN experimentally?

Coupled channel calculation of KbarNN-πΣN , using a realistic NN potential 
and a KbarN and πY potential derived from Chiral SU(3) theory. (NOT separable type)



Thank you 
very much!!


