質量数30-40,100領域の高スピン 変形状態の研究

井手口 栄治 東大CNS

Outline

重イオンビームを用いて行ってきた高スピン状態の これまでの研究と今後の計画

- ・ 質量数100領域の高スピン状態

 ¹⁰⁷Inの高スピン状態の研究
- ・ 質量数30-40領域の高スピン状態

 ⁴⁰Caの高スピン状態
- 今後の研究計画
 A~110領域の高スピン状態
 A~30-40領域の高スピン状態

¹⁰⁷Inの高スピン状態

Collaborators

B.Cederwall^A, E.Ganioglu^{A, F}, B.Hadinia^A, K.Lagergren^A, T.Bäck^A, S.Eeckhaudt^B, T.Grahn^B, P.Greenlees^B, A.Johnson^A, D.T.Joss^C, R.Julin^B, S.Juutinen^B, H.Kettunen^B, M.Leino^B, A.-P.Leppanen^B, P.Nieminen^B, M.Nyman^B, J.Pakarinen^B, E.S.Paul^D, P.Rahkila^B, C.Scholey^B, J.Uusitalo^B, R.Wadsworth^E, D.R.Wiseman^D, R.Wyss^A

- A. Department of Physics, Royal Institute of Technology, Sweden
- B. Department of Physics, University of Jyväskylä, Finland
- C. CCLRC Daresbury Laboratory, UK
- D. Oliver Lodge Laboratory, University of Liverpool, UK
- E. Department of Physics, University of York, UK
- F. Department of Physics, Faculty of Science, Istanbul University,

質量数~100、Z~50領域の原子核

- 基底状態近傍は単一粒子励起
- 高スピン準位
 - M1バンド $\pi g_{q/2}^{-1} \otimes \nu g_{7/2}$
 - Multi particle-hole excitation
 - Intruder バンド

 - πh_{11/2}の寄与(変形、高スピン)
 Smooth band termination
 → ¹⁰⁸Sn, ¹⁰⁹Sb, …

In同位体での高スピン状態はあまり良く知られていない^{***} Z<50核(107 In)で π h_{11/2} intruder orbitalの寄与は?

 \rightarrow in-beam γ 線分光による¹⁰⁷Inの高スピン状態の探索

Experimental Setup

JUROGAM 43 Ge+BGO + RITU Gas filled Ion Sep. +GREAT spectrometer

GREAT: Double sided Si strip Si PIN photodiode array Double sided planar Ge Segmented Clover Ge

Study of ¹⁰⁷In (Z=49, N=58)

Reaction : ${}^{52}Cr(187MeV) + {}^{58}Ni(580+640 \,\mu \text{ g/cm}^2)$

⁵⁸Ni(⁵²Cr, 3p)¹⁰⁷In

¹⁰⁷In level scheme

A rotational band in ¹⁰⁷In

(63/2-)

(59/2)

17182

15210

(1972)

(1972)

Linking transitions

Total Routhian Surface Calculation

A conf. (+,+1/2)

 $X = \beta_2 \cos(\gamma + 30)$

B conf.(+,-1/2)

$$\begin{split} &Z{=}49 \, N{=}\, 58 \, A{=}107 \, n; \, vacuum \, p;(+,-1/2) \, \Delta P{+}P{+} \\ & \omega{=}0.689 \, I{=}21.3 \, Ip{=}\, 6.2 \, In{=}15.1 \, E{=}{-}9.57 \\ & \beta_2{=}0.190 \, \gamma{=}\, 10.3 \, \beta_4{=}\, 0.023 \, x{=}0.145 \, y{=}0.123 \\ & \Delta_p{=}0.392 \, \Delta_n{=}0.510 \, \Delta_{px}{=}0.510 \, \Delta_{nx}{=}0.392 \end{split}$$

 $X = \beta_2 \cos(\gamma + 30)$

E conf.(-,-1/2)

$$\begin{split} Z = & 49 \, \text{N}{=}\, 58 \, \text{A}{=}107 \, \text{n}; \, \text{vacuum p}; (-,-1/2) \, \Delta\text{P}{+}\text{P}{+} \\ \omega = & 0.598 \, \text{I}{=}22.3 \, \text{Ip}{=}\, 9.5 \, \text{In}{=}\, 12.8 \, \text{E}{=}{-}7.09 \\ \beta_2 = & 0.232 \, \gamma = 9.8 \, \beta_4 = 0.041 \, \text{x}{=}0.178 \, \text{y}{=}0.149 \\ \Delta_p = & 0.596 \, \Delta_n = & 0.648 \, \Delta_{psc} = & 0.648 \, \Delta_{nsc} = & 0.596 \end{split}$$

 $Y=\beta_2 sin(\gamma + 30)$

J⁽¹⁾,J⁽²⁾ moment of inertia Exp. and TRS calc.

⁴⁰Caの高スピン状態

Collaborators

E. Ideguchi^A, D. G. Sarantites^B, W. Reviol^B, C. J. Chiara^B,
M. Devlin^B, F. Lerma^B, R.V. F. Janssens^C, M. P. Carpenter^C,
T. Lauritsen^C, C. J. Lister^C, P. Reiter^C, D. Seweryniak^C,
C. Baktash^D, A. Galindo-Uribarri^D, D. Rudolph^E, A. Axelsson^F, M. Weiszflog^F, D. R. LaFosse^G, J. N. Wilson^B, H. Madokoro^H

- A. CNS, the University of Tokyo
- B. Chemistry Department, Washington University
- C. Physics Division, Argonne National Laboratory
- D. Physics Division, Oak Ridge National Laboratory
- E. Department of Physics, Lund University
- F. The Svedberg Laboratory and Department of Radiation Science, Uppsala University,
- G. Department of Physics and Astronomy, SUNY-Stony Brook
- H. The Institute of Physical and Chemical Research (RIKEN)

High-spin states in ⁴⁰Ca

J.L. Wood et al, Phys. Rep. 215 (1992)101

Percentage of wave-functions in 40 Ca

W.J.Gerace and A.M.Green, NPA123, 241 (1969).

State	E(exp)	0p-0h	2p-2h	4p-4h	6p-6h	8p-8h
0_{1}^{+}	0	82.81	16.81	1.0	0.04	0.0
0_{2}^{+}	3.35	2.89	2.25	68.89	20.25	6.76
0_{3}^{+}	5.21	1.0	2.25	16.81	12.25	67.24

Shell Model by M.Sakakura, A.Arima, T.Sebe, PL61B, 335(1976).

State	E(exp)	0p-0h	2p-2h	4p-4h	6p-6h	8p-8h
0_{1}^{+}	0	46.46	35.04	14.48	3.56	0.46
0^{+}_{2}	3.35	25.71	2.24	34.17	29.93	7.95
0_{3}^{+}	5.21	15.07	20.49	48.69	12.27	3.49

SD band in ⁴⁰Ca

known excited states of ⁴⁰Ca

J.L.Wood et al., Phy.Rep.215(1992)101

Cranked Relativistic Mean Field Calculation (preliminary results)

• Negative parity band :

 \rightarrow odd number of particle in f_{7/2} orbital

- Signature $\alpha = 0$ band (A, B) [200]1/2 $\alpha = -1/2 \rightarrow [321]3/2 \ \alpha = -1/2 : \text{conf.1}$ [200]1/2 $\alpha = +1/2 \rightarrow [321]3/2 \ \alpha = +1/2 : \text{conf.2}$
- Signature $\alpha = 1$ band (C) [200]1/2 $\alpha = -1/2 \rightarrow [321]3/2 \ \alpha = +1/2 : \text{conf. 3}$ [200]1/2 $\alpha = +1/2 \rightarrow [321]3/2 \ \alpha = -1/2 : \text{conf. 4}$
- $\pi 3^3 \upsilon 3^2$, $\pi 3^3 \upsilon 3^4$

- Level scheme of ⁴⁰Ca is extended to 17⁻ at 23.5MeV
- Three negative parity bands in ⁴⁰Ca
- Angular distribution \rightarrow Spin assignments
- Residual Doppler shift analysis
 - → Qt(band A) = 0.90 ± 0.17eb, $\beta_2 = 0.32 \pm 0.06$ Qt(band C) = 0.53 ± 0.13eb, $\beta_2 = 0.20 \pm 0.05$
- Cranked Relativistic Mean Field calculation in progress
- $\pi 3^3 \nu 3^2$, $\pi 3^3 \nu 3^4$ configurations

今後の研究計画

- A~110領域の高スピン状態
 - 高スピンの極限

-変形の極限

A~30-40領域の高スピン状態
 - 未開拓のSD領域

A~110領域の高スピン状態の研究

Limit of deformation

R.M.Clark et al., Phys. Rev. Lett. 87, 202502 (2001)

A~110の高スピン原子核の生成

- ¹⁰⁰Ru: ⁹⁶Zr(¹³C, α 5n)
- ¹⁰⁶Pd: ⁹⁶Zr(¹³C, 3n), ⁹⁶Zr(¹⁸O, α 4n)
- ¹¹⁰Cd: ⁹⁶Zr(²²Ne, α 4n)

- ¹¹⁴Sn: ¹⁰⁰Mo(²²Ne, α 4n)

¹¹⁸Te: ¹⁰⁰Mo(²²Ne, 4n)

¹²²Xe: ¹¹⁰Pd(¹⁸O, 6n)

A~40領域の超変形状態の探索

