Dilute Cluster States

Center for Nuclear Study, University of Tokyo KAWABATA Takahiro

Introduction

Two different pictures of Nuclear Structure

Single-particle orbit in the mean-field potential.

Magic numbers (2, 8, 20,).

Describes well single-particle excited states.

Strong correlation between nucleons.

Cluster consists of several nucleons.

Clusters are weakly bound.

Dilute Cluster States in N=4n Nuclei

Alpha particle cluster is an important concept in nuclear physics for light nuclei.

Alpha cluster structure is expected to emerge near the α -decay threshold energy.

The 0_2^+ state at $E_x = 7.65$ MeV in ^{12}C

Famous 3alpha (boson) cluster state.

Dilute-gas state of alpha particles.

(B.E.) Condensed state where three alpha particles occupy the lowest s-orbit. Similar dilute-gas-like states have been predicted in self-conjugate N = 4n nuclei. ${}^{16}O(4\alpha)$, ${}^{20}Ne(2\alpha+{}^{12}C)$, ${}^{24}Mg(2\alpha+{}^{16}O)$

Does such a dilute state of clusters exists in the other N≠4n nuclei ? Condensation in Boson + Fermion mixture ??

Cluster State in ¹¹B

A 2α + t cluster state has been observed in ¹¹B(*d*,*d*') reaction.

- $3/2_{3}^{-}$ state in ¹¹B is strongly excited by the $\Delta J^{\pi} = 0^{+}$ transition.
- Analogies between the $3/2_{3}^{-}$ state and the 0_{2}^{+} state in ${}^{12}C$ (dilute-gas-like 3α cluster state) has been observed.
 - Similar excitation energies and monopole strengths.
 - ≻Not predicted in SM calculations.
- AMD (VAP) successfully describes the $3/2_{3}^{-}$ state with a $2\alpha + t$ cluster wave function.

Comparison with AMD and SM

	Experiment			SM (SFO)		AMD (VAP)		
J^{π}	B(GT))	$B(\sigma)$	B(GT)	$B(\sigma)$	B(GT)		$B(\sigma)$
$1/2^{-1}$	0.401 ± 0	.032 0.03	37 ± 0.007	0.782	0.051	0.43		0.040
$5/2^{-1}$	0.453 ± 0	.029		0.616	0.032	0.70		0.045
$3/2^{-2}$	0.487 ± 0	.029 0.03	35 ± 0.005	0.745	0.047	0.67		0.047
3/2-3	< 0.00	3 <	< 0.003		0.02		0.002	
5/2-2	0.398 ± 0	.031 0.02	12 ± 0.003	0.483	0.025	0.56		0.039
J^{π}	B(E0;IS)	B(E2;IS)	B(E2)	B(E2;IS)	B(E2)	B(E0;IS)	B(E2;IS)	B(E2)
	(fm4)	(fm4)	$(e^{2}fm^{4})$	(fm ⁴)	$(e^{2}fm^{4})$	(fm4)	(fm ⁴)	$(e^{2}fm^{4})$
$1/2^{-1}$		11 ± 2	2.6 ± 0.4	12.0	1.8		12.3	2.3
$5/2^{-1}$		56 ± 6	21±6	49.5	16.5		66.5	19.2
$3/2^{-2}$	< 9	4.7 ± 1.5	< 1.3	14.2	1.7	7	2.3	0.02
$7/2^{-1}$		38 ± 4	3.7 ± 0.9	42.0	4.4		34.4	3.6
3/2-3	96±16	< 6	(9.4±0.2)			94	5.3	0.84
5/2-2		0.4 ± 0.3	1.6 ± 1.2	0.012	0.014		0.66	0.15

AMD (VAP) successfully predicts the experimental data. E0 and M1 strengths for the $3/2_{3}^{-}$ state are well described by a $2\alpha + t$ cluster w.f. AMD (VAP) suggests a dilute-gas-like structure of the $3/2_{3}^{-}$ state in ¹¹B.

✓ The $3/2_{3}^{-}$ state might be an α condensed state in the N≠4n (boson-fermion) system. ✓ Large monopole strengths might be a signature of α cluster states.

Questions

 \checkmark Are the monopole excitations really associated with the cluster structure?

✓ Can we directly determine a rms radius of the dilute-gas-like state via precise measurement of the angler distribution ?

→ Rainbow Scattering ??

Still controversial !

Single Folding Calculation

Single folding model successfully reproduces α elastic scattering.

GS density ρ_0 is folded by density-dependent αN interaction.

$$U_{0}(r) = \int d\vec{r}' \rho_{0}(r') V(|\vec{r} - \vec{r}'|, \rho_{0}(r'))$$

Solution Solution Sector Sector

Transition Potential

TP is obtained from ACM based TD by the single folding model.

Transition density $\delta \rho_L$ from ACM is folded by density-dependent αN interaction.

$$\delta U_{L}(r) = \int d\vec{r}' \delta \rho_{L}(r) \Biggl(V \Biggl(|\vec{r} - \vec{r}'|, \rho_{0}(r') \Biggr) + \rho_{0}(r') \frac{\partial V \Biggl(|\vec{r} - \vec{r}'|, \rho_{0}(r') \Biggr)}{\partial \rho_{0}(r')} \Biggr)$$
$$V \Biggl(|\vec{r} - \vec{r}'|, \rho_{0}(r') \Biggr) = -V \Biggl(1 + \beta_{V} \rho_{0}(r')^{2/3} \Biggr) \exp \Biggl(-|\vec{r} - \vec{r}'| / \alpha_{V} \Biggr)$$
$$-iW \Biggl(1 + \beta_{W} \rho_{0}(r')^{2/3} \Biggr) \exp \Biggl(-|\vec{r} - \vec{r}'| / \alpha_{W} \Biggr)$$

 $V = 36.73 \text{ MeV}, W = 25.90 \text{ MeV}, \alpha_V = \alpha_W = 3.7, \beta_V = \beta_W = -1.9$

Inelastic Alpha Scattering

Can we determine a rms radius from the anguler distribution ?

Anguler dist. exhibits the signature... but the accurate calculation is required.

Proton Scattering

Proton scattering might be sensitive to the inner region of nuclei.

Summary

- Dilute cluster states in the p- and sd-shell nuclei are of interest.
 - B.E. condensates might appear.
- Precise measurements of the inelastic scattering are possible at RCNP.
- Dilute nature is slightly reflected to the angular distribution of the cross section.
 - Single folding calculations are performed for the (α, α') and (p,p') reactions.
 - Accurate calculation is desired.

Measured Spectra

Inelastic Scattering from ¹²C

• Transition potential is obtained by a single folding model.

$$\delta U_{L}(r) = \int d\vec{r}' \delta \rho_{L}(r) \left(V\left(\left|\vec{r} - \vec{r}'\right|, \rho_{0}(r')\right) + \rho_{0}(r') \frac{\partial V\left(\left|\vec{r} - \vec{r}'\right|, \rho_{0}(r')\right)}{\partial \rho_{0}(r')} \right)$$

- Transition densities
 ➢ From RGM
 - From Macroscopic Model

$$\delta \rho_{L=0} = -\beta_{L=0} \left(3 + r \frac{d}{dr} \right) \rho_0(r)$$
$$\delta \rho_{L=2} = -\beta_{L=2} \frac{d}{dr} \rho_0(r)$$

Calculated cross sections are not satisfactory

.... but not so bad.

Multipole Decomposition Analysis

• Multipole decomposition analysis has been performed to separate each ΔL .

$$\frac{d\sigma}{d\Omega}^{\text{exp}} = \sum_{\Delta L} \alpha_{\Delta L} \frac{d\sigma}{d\Omega}_{\Delta L}^{\text{DWBA}}$$

- Each mutipole cross section was calculated using the macroscopic transition densities.
- Transitions with $\Delta L \leq 4$ were taken into account.

Multipole Strengths in ¹¹B

- Successfully identified.
 Monopole strength

 ✓ E_x=8.56 MeV

 Quadrupole strengths

 ✓ E_x=2.12 MeV
 ✓ E_x=4.44 MeV
 ✓ E_x=5.02 MeV
 - $\checkmark E_x^{x} = 6.74 \text{ MeV}$
- No significant E1 strength at 12.5 MeV
- Sizable monopole strengths at E_x~11.0, 12.5, 14.5 MeV
 No 3/2⁻ state reported in TOI.
 ✓ New Cluster States ??
 ✓ Fragmented GMR ??

Inelastic Alpha Scattering

- Alpha scattering is suitable to investigate molecular states.
 - Simple reaction mechanism.
 - Only central interaction V₀ contributes.
- Extract transition densities in the surface region for discrete states.
- Search for analog states of 0^+_3 in continuum region by means of MDA.
- Precise measurement of B(E2;IS) for the $5/2^{-2}$ state.

