Ultracold neutron project

Feb. 20, 2007, RCNP

Member: Y. Masuda, S. Jeong, Y. Watanabe, A. Yamamoto and T. Adachi (KEK) K. Hatanaka, K. Matsuta, R. Matsumiya (Osaka) T. Kitagaki (Tohoku) T. Sanuki (Tohoku) T. Ito (Los Alamos)

Neutron confinement

UCN physics

Neutron is a fundamental element in the universe

Creation of matter and nucleosynthesis in the universe can be studied

via experiments on 1. EDM: CP violation 2. N-Nbar oscillation 3. n beta decay: lifetime and asymmetry 4. gravity 5. neutron target

Big bang 10¹⁵ GeV ~ 100 GeV Creation of matter

Sakharov's condition

Baryon number violation
Departure from thermal equilibrium
CP violation and C violation

No antimatter is observed

"Search for antihelium in cosmic rays" Phys. Lett. B461 (1999) 387. Diffuse y flux from annihilation at domain boundary Astrophysical J. 495(1998)539

Extension of standard model

Saryon asymmetry: $(N_B - N_{antiB})/N_Y \sim 10^{-10}$,
but 10^{-25} in standard model

SUSY
 Explain the baryon asymmetry of 10⁻¹⁰
 Solve hierarchy problem
 Include quantum gravity

EDM in SUSY

Barr 1993, Fortson, Sanders, Barr 2003

[Weinburg 1989: 1. EDM operator of $d_n\overline{\psi}\gamma_5\sigma_{\mu\nu}\psi F^{\mu\nu}$, 2. dimensional analysis (Manohar and Georgi 1984), 3. renormalization factor]

 $d_{q} = eQ(\alpha_{s}/18\pi)m_{q} |A_{q}/m_{\tilde{g}}^{3}| sin(\varphi_{Aq}-\varphi_{\tilde{g}}) f$ $d_{n} \sim \epsilon_{q} \times (2.4 \times 10^{-24} \text{ e} \cdot \text{cm}), \epsilon_{q} \sim sin(\varphi_{Aq}-\varphi_{\tilde{g}})$

EDM measurement $\mathcal{H} = -(\mu H + d_n E)$ dynamical phase is measured by means of a polarimetry Electric Magnetic field field Comagnetometer n spin ³He spin and SQUID

Ramsey resonance

Phys. Lett. A in press, available online 8 Dec. 2006

Results for $\varphi = \pi + (\omega - \omega_0)t$

$\varphi = \pi + \Upsilon \Delta H_0 t$

EDM with UCN

UCN can be confined in a bottle long precession time in E

 $exp(-i\mu H_0/\hbar \cdot t)$ $\partial H_0/\partial z < 1 nT/m$ $at H_0 = 1 \mu T$

pick up of ³He precession with SQUID magnetometer

Precision EDM measurement

Comagnetometer for leakage current effect Homogeneous field

$$\begin{split} \delta d_n &= \hbar / \{2 E t_c \sqrt{mN} \} \\ t_c: \text{ coherent time, N: number of n in EDM cell} \\ m: number of measurement \\ \delta d_n &\sim 10^{-28} \text{ cm: SUSY, Multi-Higgs, Left-Right} \\ &= 50 \text{ kV/cm, } t_c = 130 \text{ s,} \\ \rho &= 300 \text{ UCN/cm}^3 \text{ in 8L} \end{split}$$

N-Nbar

 Baryon asymmetry
 If EW phase transition is 2nd order, Δ | B - L | \neq 0 at grand unified scale, Kuzmin, Phys.Lett. (1985) N-Nbar: $\Delta B = 2$, $\Delta L = 0$ Nucleon decay: $\Delta B = 1$, $\Delta L = 1$, $\Delta |B - L| = 0$

Some $\Delta(B-L)\neq 0$ nucleon decay modes (PDG'04)

(B−L)≠0 modes	Limit at 90% CL	S/B	Experiment'year
$p \rightarrow v v e^+$	>1.7×10 ³¹ yr	152/153.7	IMB'99
$p \rightarrow \nu \nu \mu^+$	$>2.1 \times 10^{31} \text{ yr}$	7/11.23	Fréjus'91
$n \rightarrow e^+ e^- v$	$>2.57 \times 10^{32} \text{ yr}$	5/7.5	IMB'99
$n \rightarrow \mu^+ \mu^- \nu$	>7.9×10 ³¹ yr	100/145	IMB'99
$n \rightarrow v v \overline{v}$	>1.9×10 ²⁹ yr	686.8/656	SNO'04
$n \rightarrow \overline{n}$	$>7.2 \times 10^{31} \text{ yr}$	4/4.5	Soudan-II'02
$nn \rightarrow \sqrt{\nu}$	$> 4.9 \times 10^{25} \text{ yr}$		Borexino'03

e.g. for $p \rightarrow vve^+$ with a lifetime >1.7×10³¹ yr Super-K should detect ~ 430 events/yr

 $n \rightarrow e^+ e^- v$ mode with highest limit

 $n \rightarrow v v \overline{v}$ $\Delta B = -1$ mode with lowest limit

 $nn \rightarrow v\overline{v}$ $\Delta B = -2$ mode with lowest limit

 $n \rightarrow \overline{n}$ mode with highest future potential?

Theories with $n \leftrightarrow \overline{n}$, no B-L=0 nucleon decay

$\tau_{N-Nbar} \ 10^9 \ \sim \ 10^{10} \ s$

• Connection with neutrino mass physics via seesaw mechanism

K. Babu and R. Mohapatra, PLB 518 (2001) 269 B. Dutta, Y. Mimura, R. Mohapatra, PRL 96 (2006) 061801

• Connection to low quantum gravity scale ideas

G. Dvali and G. Gabadadze, PLB 460 (1999) 47 S. Nussinov and R. Shrock, PRL 88 (2002) 171601 C. Bambi et al., hep-ph/0606321

• Baryogenesis models at low-energy scale

A. Dolgov et al., hep-ph/0605263 K. Babu et al., hep-ph/0606144 Neutron-Antineutron Oscillations: Formalism

$$(\alpha/\hbar)^2/[(\alpha/\hbar)^2 + \omega^2/4] \cdot sin[(\alpha/\hbar)^2 + \omega^2/4]^{1/2}$$

$$\Psi = \begin{pmatrix} n \\ \overline{n} \end{pmatrix} \quad \text{mixed n-nbar QM state}$$

 α -mixing amplitude

$$H = \begin{pmatrix} E_n & \alpha \\ \alpha & E_{\overline{n}} \end{pmatrix}$$
 Hamiltonian of the system

$$E_n = m_n + \frac{p^2}{2m_n} + U_n$$
; $E_{\bar{n}} = m_{\bar{n}} + \frac{p^2}{2m_{\bar{n}}} + U_{\bar{n}}$

Important assumptions :

•
$$\alpha(n \rightarrow \overline{n}) = \alpha(\overline{n} \rightarrow n) = \alpha$$
 (i.e. T-invariance)

- $m_n = m_{\overline{n}}$ (CPT not violated)
- magnetic moment $\mu(\overline{n}) = -\mu(n)$ as follows from CPT

Neutron β decay

Lifetime

Nucleosynthesis at big bang: ⁴He abundance etc. p-p chain: $p + p \rightarrow D + e^+ + v_e$ ($n \rightarrow p + e^- + v_e$) Asymmetry + lifetime G_V and G_A Unitarity: $G_V = G_F \cdot V_{ud}$ $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

G_V and G_A

n lifetime

T_n = 878.5 ± 0.8 s Serebrov et. al, Phys.Lett.B605(2005)72

> 7σ difference

 $\tau_n = 885.7 \pm 0.8 s$ PDG

T_n in a magnetic bottle

 $\delta \tau_n / \tau_n \leq 10^{-4}$

solenoid valve

0

 \bigcirc

e sweeper

+V

magnetic potential

no wall loss X negligible Majorana transition

UCN filling

T_n in a magnetic bottle

 $\delta \tau_n / \tau_n \leq 10^{-4}$

n

BCOUNTER

+V

e sweeper

BCOUNXEr

magnetic potential

no wall loss negligible Majorana transition

X

Measure decay of β count

β asymmetry

PERKEO

Gravity

Newtonian gravity is valid at submillimater distance?

Gauge fields in extra dimension mediate repulsive force 10⁶~10⁸ times stronger than gravity at submillimater distance. Arkani et al., 1999

Quantization under Gravity

mgh: 1.02 peV/10µm

Nesvizhevsky et al. Nature 415(2002)297

Required UCN density 1

n lifetime 885.7±0.8 s (PDG) \leftrightarrow 878±0.7±0.3 s (Serebrov et al.) For 10⁻⁴ measurement: 50 UCN/cm³ \odot n β decay asymmetry Test of CKM unitarity, V_{ud} with 10⁻³: 16 UCN/cm³ at $\tau_s = 2.6$ s

continued

🔊 n EDM

 $\delta d_n \sim 10^{-28}$ cm: SUSY, Multi-Higgs, Left-Right E = 50 kV/cm, τ_c = 130 s, ρ = 300 UCN/cm³

n-nbar oscillation

> 8.8x10⁷ s cold n beam (1994), > 1.2x10⁸ s Fréjus (1990), > 1.2x10⁸ s Kamioka (1986)

10⁹~10¹⁰ s SUSY with v mass and See-Saw model

 1.3×10^8 UCN/s (5×10^5 UCN/cm³ in 40 liter) $\rightarrow 10^{10}$ s

	Source type	E_c and T_s	UCN density p _{UCN} (UCN/cm³)
Ours vertical 100 W proton	0.96K He-II in D2O	$E_{c} = 90 \text{ neV}$ $T_{s} = 30 \text{ s}$	10 in experiment
Grenoble 60MW reactor	Turbine	E _c = 335 neV	50 in source
Munich 20MW reactor	SD ₂	E _c = 250 neV	10 ⁴ in source
North Carolina 1 MW reactor	SD2	E _c = 335 neV	1300 in source
PSI 12 kW proton	SD ₂	E _c = 250 neV T _s = 888 s	2000 in source
Los Alamos 2.4 kW proton	SD ₂	E _c = 250 neV T _s = 2.6 s	120 in source
SNS cold neutron beam	0.3K He-II	E _c = 134 neV T _s = 500 s	430 in He-II

	Source type	E_c and τ_s	UCN density p _{UCN} (UCN/cm³)
Ours vertical 100 W proton	0.96K He-II in D2O	$E_{c} = 90 \text{ neV}$ $T_{s} = 30 \text{ s}$	10 in experiment
Grenoble 60MW reactor	Turbine	E _c = 100 neV	2~3 in experiment
Munich 20MW reactor	SD ₂	E _c = 250 neV	10 ⁴ in source
North Carolina 1 MW reactor	SD2	E _c = 335 neV	1300 in source
PSI 12 kW proton	SD ₂	E _c = 250 neV T _s = 888 s	2000 in source
Los Alamos 2.4 kW proton	SD ₂	E _c = 250 neV T _s = 2.6 s	120 in source
SNS cold neutron beam	0.3K He-II	E _c = 134 neV T _s = 500 s	430 in He-II

Horizontal cryostat

	Source type	E_c and T_s	UCN density p _{UCN} (UCN/cm³)
Ours horizontal 500 W proton	0.6K He-II in D2O	E _c = 90 neV T _s = 150 s	1000 in experiment
Grenoble 60MW reactor	0.5K He-II	E _c = 250 neV T _s = 150 s	1000 in He-II
Munich 20MW reactor	SD ₂	E _c = 250 neV	10 ⁴ in source
North Carolina 1 MW reactor	SD2	E _c = 335 neV	1300 in source
PSI 12 kW proton	SD ₂	E _c = 250 neV T _s = 888 s	2000 in source
Los Alamos 2.4 kW proton	SD ₂	E _c = 250 neV T _s = 2.6 s	120 in source
SNS cold neutron beam	0.3K He-II	E _c = 134 neV T _s = 500 s	430 in He-II

	Source type	E_c and T_s	UCN density p _{UCN} (UCN/cm³)
Ours horizontal 500 W proton	0.6K He-II in D2O	E _c = 90 neV T _s = 150 s	1000 in experiment
Grenoble 60MW reactor	0.5K He-II	E _c = 90 neV T _s = 150 s	216 in He-II
Munich 20MW reactor	SD ₂	E _c = 90 neV	2160 in source
North Carolina 1 MW reactor	SD2	E _c = 90 neV	181 in source
PSI 12 kW proton	SD ₂	E _c = 90 neV T _s = 888 s	432 in source
Los Alamos 2.4 kW proton	SD ₂	E _c = 90 neV T _s = 2.6 s	26 in source
SNS cold neutron beam	0.3K He-II	E _c = 90 neV T _s = 150 s	71 in He-II

	Source type	E_c and τ_s	UCN density p _{UCN} (UCN/cm³)
Our future 12.5 kW proton	0.6K He-II in D2	E _c = 210 neV T _s = 150 s	7x10 ⁵ in experiment
Grenoble 60MW reactor	0.5K He-II	E _c = 250 neV T _s = 150 s	1000 in He-II
Munich 20MW reactor	SD ₂	E _c = 250 neV	10 ⁴ in source
North Carolina 1 MW reactor	SD2	E _c = 335 neV	1300 in source
PSI 12 kW proton	SD ₂	E _c = 250 neV T _s = 888 s	2000 in source
Los Alamos 2.4 kW proton	SD ₂	E _c = 250 neV T _s = 2.6 s	120 in source
SNS cold neutron beam	0.3K He-II	E _c = 134 neV T _s = 500 s	430 in He-II

He-II or SD₂

	He-II	D ₂
production rate	σ_{coh} = 0.76 b	σ_{coh} = 2.48 b
$\tau_a = 1/(\rho v \sigma_a)$	∞	0.2 s
operating temperature	< 1 K	5 K
mean free path	>> 1 m	several cm
structure	almost vacuum	dislocation, defect
heat conduction	excellent, no local heating	local heating
Fermi potential	negligibly small	109 neV