RCNPサイクロトロン施設 入射器更新の現状 II - フラットトップ加速システムの開発 -

大阪大学 核物理研究センター

<u>福田光宏</u>、畑中吉治、斎藤高嶺、田村仁志、 依田哲彦、木林満、岡村弘之、民井淳、 酒見泰寛、永山啓一、浦城道男、森信俊平、 後藤英樹、稲田洋司、魚梁博之、大江洋一、増田欽哉、 矢冨一慎、力石将樹、佐田野圭吾、羽田 知史、齋藤典亨

Contents

- 1. 目的
- 2. フラットトップ加速の原理
- 3. RCNP AVFサイクロトロンのフラットトップ加速シ ステムの特長と性能
- 4. フラットトップ加速ビーム開発の現状
 - 53MeV 陽子(300MeV@Ring): 第5高調波

High Quality Beam at RCNP Cyclotron Facility

Energy Resolution △E/E ~ 0.005%

Ring Cyclotron K=400 MeV ∆E/E ~ 0.01% Since 1992

<image>

AVF Cyclotron K=140 MeV ∆E/E < 0.1% Since 1973 Stability of Magnetic Field ∆B/B < 0.001%

"質の高いビームをより多く!!

エネルギー幅 ΔE/E~10⁻⁴
 高安定性(ビーム強度、軌道、位相、etc.)

・ビーム電流~数 *μ* A ・高輝度化

AVFサイクロトロンへの フラットトップ加速システム の導入

・AVFサイクロトロン(入射器) の引出ビームの質と量を向上

・リングサイクロトロンへの入射 効率を高め、良質なビームの 強度を増強

AVFサイクロトロンのアップグレード

項目	主な内容
RF系	・フラットトップ加速システムの開発 ・ディー電極の更新 ・終段真空管アンプと電源の更新
イオン源系	・18GHz超伝導ECRイオン源の開発 ・偏極Li ³⁺ イオン源の開発
ビーム 輸送系	・AVFサイクロトロンの分析ビームライン(AVFサイクロ トロンからリングサイクロトロン実験室へのバイパス ビームラインも兼用)を新設
制御系	・PCベースの制御システムに更新
電源系	・トリムコイル電源等の更新

2. フラットトップ加速の原理

●高調波を用いて加速粒子のエネルギー利得分布を平坦化

▶ 加速エネルギーを均一化

【リングサイクロトロン】

・独立した第3高調波加速空洞によりエネルギー利得 を補正

PSI、RCNP、NAC

【AVFサイクロトロン】

 基本波に高調波を重畳した電圧波形を用いて加速 NAC、RIKEN、JAEA、RCNP

1ターン当たりのエネルギー利得と高調波電圧比

●Single Deeの場合

$$E_{gain} = 2N_{dee}Q\left[V_{1}\sin\left(\frac{\theta_{dee}}{2}h\right)\cos\phi + V_{k}\sin\left(\frac{\theta_{dee}}{2}hk\right)\cos k\left(\phi + \alpha\right)\right]$$

 N_{dee} : Number of Dee θ_{dee} : Span angle of DeeQ: Charge state V_1 : Fundamental voltage V_k : k-th harmonic voltageh: Acceleration harmonics

 α : Phase offset of the k-th harmonics

$$\theta_{dee} = 180^{\circ} \text{ のとき},$$

 $E_{gain} = 2Q \bigg[V_1 \sin \bigg(\frac{\pi}{2} h \bigg) \cos \phi + V_k \sin \bigg(\frac{\pi}{2} h k \bigg) \cos k \big(\phi + \alpha \big) \bigg]$
フラットトップ波形の条件: $\frac{d^2 E}{d\phi^2} = 0 \quad at \phi = 0$
体倍波の電圧比 $\frac{V_k}{V_1} = \frac{1}{k^2}$

フラットトップ加速のエネルギー利得分布

重畳する高調波の次数が上がると・・・

M. Fukuda, et al., RSI 74(2003)2293

・フラットな位相領域は狭くなる ➡ ビーム位相幅制御と等時性磁場
 生成の高精度化

・必要な高調波電圧は小さくなる ➡ 省パワー、FT空洞のコンパクト化

3. RCNP AVFサイクロトロンのフラットトップ加速システムの特長と性能

●特長

・高調波周波数 50~90MHz ・第5、第7、第9高調波を基本波 (6~18MHz)に重畳(世界初)

※第7、第9高調波は省パワーの点で優れて いる: 高調波電圧~数百V!!

フラットトップ加速用高調波空洞の構造とパラメータ

主ショート板位置 (m)

ローレベル性能試験結果

- ●共振周波数
 - ・50~80MHzでインピーダンスがほぼ50 Ω 、0°(SWR= 1.0)にマッチング
 - ・63~77 MHzでの寄生共振モードとの干渉、80MHz以上でのミスマッチが懸念されるが、対応策は検討中

フラットトップ加速電圧のPickup信号波形

H⁺: 53.3 MeV @ AVF Cyclotron (300 MeV @ Ring Cyclotron)

第5高調波 77.084 MHz

4. フラットトップ加速ビーム開発

これまでに実施したパワー試験の条件

粒子	エネルギー(MeV)		AVF 基本波周波数	高調波	
	Ring	AVF	(MHz)	次数	周波数(MHz)
4He	400	87.14	10.144018	5	50.72009
				7	71.008126
3He	420	87.81	11.65007	5	58.25035
d	80	18.73	6.75	9	60.75
pol.D	200	43.6	10.11632	5	50.5816
р	200	39.32	13.375664	5	66.87832
р	250	46.7	14.496449	5	72.482245
р	300	53.3	15.416773	5	77.083865

Х

はビーム開発中

a) 53MeV 陽子(300MeV@Ring): 第5高調波

Proton : 53 MeV @ AVF Cyclotron (300 MeV @ Ring Cyclotron)

- •基本波: f1 = 15.417 MHz V1 ≒ 42 kV
- •5倍波: f5 = 77.084 MHz

ピックアップ信号の周波数分析

53 MeV Proton: ビーム位相幅

53 MeV Proton: 引出前のターンパターン

基本波加速 (FT OFF)

53 MeV Proton: エミッタンス

エネルギー幅を正確に見積るためには、横軸の較正、測定系の分解能、エミッタンスの寄与などを考慮する必要あり

5. まとめ

- AVFサイクロトロン(入射器)のフラットトップ加速シ ステムが本格的に稼働を開始
- 高調波周波数 50~80 MHzにおいて、5倍波、7倍 波、9倍波の励振に成功
- フラットトップ加速ビーム開発に着手
- 53 MeV Proton(300MeV@RingCyclotron)のフ ラットトップ加速において、約0.5 µ Aの引き出し ビーム電流を実現

今後の課題

- 制御信号用ピックアップ電極の改良
- 寄生共振モードへの対策
- フラットトップ加速ビーム開発とリングサイクロ トロンへの入射
- グランドライデンを用いた分析

などなど