「RCNP入射器更新で展開される新しい研究」 2007.2.19~20 核物理研究センター

# 偏極軽重イオン直接反応

岡村弘之 大阪大学核物理研究センター

✓ (d,<sup>2</sup>He) @理研・・・0<sup>-</sup>, spin-dipole
 ✓ (<sup>6</sup>Li,<sup>6</sup>He) @RCNP・偏極 <sup>6</sup>Li 計画
 ✓ (<sup>3</sup>He,t) の状況・(p,n) との対比
 複合粒子反応による精密核分光研究に向けて

#### Classification of nuclear direct reactions

Nucleon reaction (at intermediate energies)

• smallest distortion ( $\sigma_{NN}$  minimum @ ~300 MeV)

- exact treatment of single-nucleon knockon exchange (SNKE)
- well-studied effective interaction (medium effect),  $\rho$ -dependence
- extensively studied using *polarized* beams
- but low selectivity

Light heavy-ion reaction

 (<sup>3</sup>He,t), (d,<sup>2</sup>He), (d,d'), (α,α'), (<sup>6</sup>Li,<sup>6</sup>He), (<sup>7</sup>Li,<sup>7</sup>Be), ....
 high selectivity
 possible use of (tensor) polarized beams
 characteristic wave func. (not by shell model)
 C.C. with breakup channels
 sequential process ? (at lower energies)

• not extensively studied at intermediate energies, although *theoretical tools are well prepared* !

Heavy-ion reaction <sup>12</sup>C. <sup>16</sup>O. ....

(p,p')(p,n)(n,p)



- high selectivity
- proj.-target symmetric treatment w/ shell model
- small recoil effect
- C.C. with bound excited-states
- but complicated spectrum

# $(d,^{2}\text{He})$ reaction

<sup>2</sup>He = p-p in <sup>1</sup>S<sub>0</sub> measured by coin. detection of p-p with small relative energies p-p FSI enhances <sup>1</sup>S<sub>0</sub> amplitude (purity?  $\rightarrow$  next slide)

✓ (n,p)-type charge-exchage reaction (∆T=1, ∆T<sub>z</sub>=+1) with spin-transfer (∆S=1; because d[1<sup>+</sup>] → <sup>2</sup>He[0<sup>+</sup>])
 ✓ involves only charged particles (primary beam) → relatively high-efficienty & resolution

Suitable to extract  $\beta_+$ -strength by  $d\sigma/d\Omega[q\sim0] \propto F(q,\omega) B(GT)$ and study of spin-flip dipole states by tensor-pol. obs., for (more) *neutron-rich residuals,* in particular.

At intermediate energies:

SATURNE (300 MeV/A), RIKEN (135 MeV/A), Texas A&M (64 MeV/A) RCNP (100 MeV/A), and most extensively KVI (85 MeV/A)



 ✓ Data are reasonably well described by 1-step Born approximation
 ✓ Norm. consts. are consistent with those of (*p*,*n*) reactions



 $\Psi_{ppB}$  3-body wave func. is solved by C.C. [<sup>1</sup>S-<sup>1</sup>D] with adiabatic approx. Charge-exchange transition is treated in Born approx. SKNE by short-range aprox. (central)

С

Simple projectile form-factor — advantage over other composite projs.

 $(d,^{2}\text{He})$  extensively used @ KVI,  $E_{d}$  = 85 MeV/A ( $\Delta E \sim 150 \text{ keV}$ )





## テンソル偏極ビームを用いた $(d,^{2}\text{He})$ 反応によるO<sup>-</sup>励起

 $A(d,^{2}\text{He})B(0^{-})$ at  $\theta=0^{\circ}$ 

1

0

 $p_{ZZ}$ 

-2

| 3(0 <sup>−</sup> )<br>° | <b>∂</b> □ □ 1 <sup>+</sup> | $\Rightarrow A 0^+$                   |                       | <b>B</b><br>0 <sup>-</sup>                   | $2_{\text{He}} = 0^+$ | $\Rightarrow$ |
|-------------------------|-----------------------------|---------------------------------------|-----------------------|----------------------------------------------|-----------------------|---------------|
|                         | $m=$ $m\neq$                | $0 (p_{ZZ} = -$<br>0 $(p_{ZZ} = -$    | -2) のと<br>F1) なら      | き反応は<br>ば反応は                                 | 起こり<br>起こらなし          | ١             |
|                         | 断ī<br>i.e.                  | <u>面積の</u> p <sub>zz</sub> f<br>テンソル係 | <u>依存性</u> ↔<br>扁極分解的 | 0 <sup></sup> 励起0<br>能 <i>A<sub>zz</sub></i> | <b>のサイン</b>           |               |
|                         | $p_Z$                       | $= \sum_{m}$                          | N(m) =                | = N(+                                        | 1) - N(-              | 1)            |
| N(0)                    | $p_{ZZ}$                    | = N(-                                 | +1) - 2N              | V(0) + N                                     | (-1)                  | Z             |
| <                       |                             | = 1 - 3                               | 3 <i>N</i> (0)        |                                              |                       | (+) +1        |
|                         |                             |                                       |                       |                                              |                       |               |
|                         |                             |                                       |                       |                                              |                       |               |

+1-1m

m





## Isovector $0^+ \rightarrow 0^-$ excitation







<sup>2</sup>He = p-p in <sup>1</sup> $S_0$  ••• enhanced via p-p FSI <u>相対エネルギー1 MeV 以下の p-p</u>を同時計数 <sup>1</sup>H(*d*,*pp*)*n* の PWIA によれば P 波以上の寄与は数%  $\Delta S=1, \Delta T=1, \Delta T_{Z}=+1$  (*n*,*p*) 型反応 ビーム・検出粒子とも荷電粒子・・・高効率・高分解能 問題点: ✓大口径スペクトログラフ・・・分解能に限界 ✓高い偶発同時計数率・・・ビーム量に制限 σ(*d*,*pX*) は *A*<sup>2/3</sup> に比例 ••• 重核は難しい

cf. σ(<sup>3</sup>He,*dX*) ∝ *A*<sup>1/3</sup> ✓ ψ[*d*], ψ[<sup>2</sup>He] の空間広がり大・・・単調な角度分布



bound & compact <u>ejectile (0+)</u> & <u>projectile (1+)</u> w/o excited state even-even odd-odd

安定な odd-odd 核:<sup>2</sup>H (1<sup>+</sup>), <sup>6</sup>Li (1<sup>+</sup>), <sup>10</sup>B (3<sup>+</sup>), <sup>14</sup>N (1<sup>+</sup>) 4つ

<sup>6</sup>Li:アルカリ金属・・・円偏光レーザーで大強度偏極ビーム <sup>6</sup>He:束縛粒子(t<sub>1/2</sub>=807ms)・・・高効率・高分解能測定

有望な反応: (<sup>6</sup>Li,<sup>6</sup>He) ただし (p,n) 型 (<sup>6</sup>Be は unbound)

反応機構をシンプルに ⇒ 100 MeV/u 以上 ⇒ <sup>6</sup>Li<sup>3+</sup> が必要











S.Nakayama et al., NIM A404 (1998) 34.

## 偏極 <sup>6/7</sup>Li ビーム加速実績



## RCNP 偏極リチウムイオン源計画



⇒2波長光必要

single-mode (~1MHz)

# Florida State Univ. 1991~

### RCNP

#### **TOPTICA DL100**

#### Ar + Dye Lasers (30~60 mW) + EOM





Littrow-type ECLD 15 mW@671 nm  $\times$ 3 2 for pumping 1 for LIF Feed-Forward [Piezo $\rightarrow$ Power]  $\Rightarrow$  80 GHz scan w/o mode-hop



ノズル・スキマー幾何はFSU・Heidelberg型を踏襲

#### **Optics Layout**







磁気モーメント 
$$\mu = \frac{e\hbar}{2m_pc}(1+a)$$

Dirac 粒子:  $a=0 \Leftrightarrow \omega_s = \omega_c$ 

磁場 B 中 軌道回転角速度 の Cyclotron Freq. スピン回転角速度 の

Larmor+Thomas歳差

$$\omega_{c} = \frac{eB}{m\gamma}$$
$$\omega_{s} = \frac{eB}{m\gamma} (\gamma a + 1)$$





磁場でスピン回転 電場を併用して軌道は戻す

加速器入射前の 低エネルギーならば可能

バン・デ・グラフでは一般的だが サイクロトロンでは加速中にスピン歳差運動

特定のターンのみを引き出す必要有り(single-turn extraction)
 等時性・・・連続エネルギーで加速可能 ⇔ 位相安定性
 リングサイクロトロン・・・ 可(入射ビーム整形・Phase Compression)
 AVF サイクロトロン・・・ 難(中心部弱収束領域で制限)
 加速後のスピンの向きを高効率でモニターする偏極度計必要

採用した方法 —

Wien Filter

ION SOURCE

Cyclotron

7.5 keV

Rotate

Spin



#### 偏極度計@AVF下流

<sup>4</sup>He(<sup>6</sup>Li,  $\alpha$ )<sup>6</sup>Li  $E_{^{6}\text{Li}} \leq 60 \text{ MeV}, \ \theta_{\alpha} = 30^{\circ}$ FSU, MPI-Heidelberg で豊富な実績

#### 偏極度計@イオン源

$$A_{yy} \left[ {}^{2}\mathrm{H}({}^{6}\vec{\mathrm{Li}},\alpha)\alpha \right] = A_{yy} \left[ {}^{6}\mathrm{Li}(\vec{d},\alpha)\alpha \right]$$
  
by parity conservation  
$$\mathsf{E}_{\alpha} \cong \mathsf{11} \; \mathsf{MeV}$$



$$V_{\text{SCECR}} = +19 \text{ kV}$$
  
 $\Rightarrow V_{\text{target}} \leq -80 \text{ kV}$ 

Secondary electron suppression  $V_{acc.} > V_{target}$  by 0.5~few kV

Venetian-blind type collimator



複合粒子反応機構 に関してコメント

笹野(東大)氏の解析

$$\frac{d\sigma}{d\Omega}(q \sim 0, E_x) = \hat{\sigma}(E_i, A)F(q, \omega)B(\mathsf{GT})$$

e.g. T.N. Taddeucci et al., NPA 469 (1987) 125

Comparison:  $(^{3}\text{He}_{t}) \& (p_{n})$ 含 Preliminary データ 100 Mo10000 (A.U.) (A.U.) IAS  $d\sigma/d\Omega/dE_{e.m.}$ 6000 SDR smeared 4000  $(^{3}\text{He},t)$  $(p_n)$ 2000 @ 300 MeV  $(^{3}\text{He},t)$ 0 10 20 0 Excitation energy  $E_x$  (MeV) Good agreement up to GTGR region



# New <sup>58</sup>Ni(<sup>3</sup>He,t) data: very preliminary

by courtesy of R.G.T. Zegers





Proportionality between q=0 cross section & B(GT)

$$\frac{d\sigma}{d\Omega}(q \sim 0, E_x) = \hat{\sigma}(E_i, A)F(q, \omega)B(\mathsf{GT})$$

#### T.N. Taddeucci et al., NPA 469 (1987) 125

#### Assumptions:

• Only  $\ell = 0$  form factor contributes.

But  $\ell = 2$  components can be important, while it is negligible in  $\beta$ -decay.

- Only central interaction  $V_{ST}(r)$  contributes. But tensor int. can be important event at  $\theta = 0^\circ \& \ell = 0$ through knock-on exchange processes. T=1:okT=0:not
- Eikonal approximation &  $b \to 0$  !?  $\chi_f^*(k_f; r) \chi_i(k_i; r) \xrightarrow{\text{eikonal}} \exp(i q \cdot r) S(b),$ where  $b \simeq L/k$ , but  $L \neq \ell = 0$  !!

 $|S_L|$   $|S_L|$   $|I_L|$   $|I_L$ 

Systematic analyses desired  $\cdots$  need more reliable calc. code for (<sup>3</sup>He,*t*)



#### <u>軽重イオン直接反応</u>

▶ 選択性&RCNPの高分解能を利用したユニークな核分光が可能 > (d,<sup>2</sup>He), (<sup>6</sup>Li,<sup>6</sup>He) · · · 1<sup>+</sup>+0<sup>+</sup>→0<sup>+</sup>+I<sup>π</sup> 型反応 テンソル偏極分解能 A<sub>22</sub>(0°) による 0-1-(自然パリティ)の模型非依存・高感度識別 ⇒ テンソル相関(π中間子相関)の情報 ▶ 偏極 6Li イオン源・スピン回転制御(シングルターン)の整備が進行中 ▶ 複合粒子反応解析の精度向上の提案 — 例:(<sup>3</sup>He,t) vs. (p,n) — ✓ 散乱粒子分解チャネルを結合した散乱波解の利用 ✓ 散乱粒子・標的核内の相互作用二核子の正しい反対称化(含テンソル相互作用) ✓ 密度依存型有効相互作用による媒質効果の導入 ✓ (できればCCBAでなく)荷雷交換も含むチャネル結合計算 が強く望まれる

個々の理論的道具は揃っている (=古い技術:反応理論家には魅力に乏しいかも知れないが・・・)

組み合わせて利用可能範囲を拡大する事が重要

⇒ 不安定核による直接反応(理研RIBF)の発展へ

# Backup

もう少しまじめに基本的対称性から・・・

鏡映(空間反転+回転)不変性  $\begin{array}{l} \langle \pi_{B}I_{B}M_{B}+00|T|+00+1M_{a}\rangle \\ = -\pi_{B}(-)^{I_{B}} \\ \times \langle \pi_{B}I_{B}-M_{B}+00|T|+00+1-M_{a}\rangle \end{array} \qquad PR_{y}(180^{\circ})|\pi IM\rangle = \pi(-)^{I-M}|\pi I-M\rangle \\ I_{b} = I_{A} = 0, I_{a} = 1 \\ \pi_{b}\pi_{A}\pi_{a} = + \\ M_{B} = M_{a} \text{ at } \theta = 0^{\circ} \end{array}$ 

一般化
$$A_{zz}(0^{\circ}) = \begin{cases} +1 & \text{for natural parity} [\pi_B = (-)^{I_B}] \\ -2 & \text{for } 0^- \end{cases}$$

反応断面積 (スピン量子化軸 Z // ビーム軸 z)

$$\sigma = \sigma_0 \left( 1 + \frac{1}{2} P_{ZZ} A_{zz} \right) = \begin{cases} \sigma_0 \left( 1 - A_{zz} \right) & \cdots & P_{ZZ} = -2 \\ \sigma_0 \left( 1 + \frac{1}{2} A_{zz} \right) & \cdots & P_{ZZ} = +1 \end{cases} \quad \sigma_0 : \# \ iftial constant \ ext{matrix} \ o_0 : \# \ iftial constant \ o_0 : \# \ o_0 :$$

$$p_{ZZ} = +1$$
  $p_{ZZ} = -2$   
n.p.  $\frac{3}{2}\sigma_0$  0  
 $0^-$  0  $3\sigma_0$ 



# Purity of ${}^{1}S_{0}$ in detected *p*-*p*

No study for nucleus target.

For <sup>1</sup>H target, impurity is few percent if  $E_{pp}$  < 1 MeV according to PWIA



#### 1-step direct reaction ?



may be dominant at E < 100 MeV/A?

*t*-matrix (direct+exchange) for *A*=28 target W.G.Love, M.A.Franey, PRC 24 (1981) 1073



Non-negligible effects of exchange-tensor on  $D_{NN}(0^{\circ})$  event at 300 MeV T.Wakasa *et al.*, PRC 51 (1995) R2871.