Spin-Dipole Excitations and Neutron Matter EOS

RCNP, Osaka, February 19-20, 2007

H. Sagawa, University of Aizu

- 1. Introduction
- 2. Neutron Matter EOS and Neutron Skin Thickness
- 3. Spin-Dipole Excitations and Neutron Skin Thickness
- 4. Summary

Self consistent HF+RPA calculations

Self consistent RMF+RPA (TDHF) calculations

 (α, α) experiment

What can we learn about neutron EOS from nuclear physics?

Neutron star vs. Aizu

Mass=1.4 M_{sun}, Radius=10 km Spin rate up to 38,000 rpm Density~10¹⁴ g/cc, Magnetic field~10¹² Gauss

J.M. Lattimer and M. Prakash, Sience 304 (2004)

interactions: 1 for SI, 2 for SIII, 3 for SIV, 4 for SVI, 5 for Skya, 6 for SkM, 7 for SkM^{*}, 8 for SLy4, 9 for MSkA, 10 for SkI3, 11 for SkI4, 12 for SkX, 13 for NLSH, 14 for NL3, 15 for NLC, 16 for SII, 17 for SV, 18 for Skyb, 19 for SGI, 20 for SGII, 21 for SLy10, 22 for NL1, and 23 for NL2.

Parameter sets of SHF and relativistic mean field (RMF) model

Notation for the Skyrme interactions

1	SI	2	SIII	3	SIV
4	SVI	5	Skya	6	SkM
7	SkM*	8	SLy4	9	MSkA
10	SkI3	11	SkI4	12	SkX
13	SGII				

Notation for the RMF parameter sets

14	NL3	15	NLC
16	NLSH	17	TM1
18	TM2	19	DD-ME1
20	DD-ME2		

Fig. 4

Model Independent observation of neutron skin

Electron scattering parity violation experiments

Polarized electron beam experiment at Jefferson Lab.

---- Approved but not yet scheduled! ----

Sum Rule of Spin Dipole Excitations

$$\hat{O}_{\pm}^{\lambda} = r[Y_{l=1} \times \sigma]^{\lambda} t_{\pm}$$

$$S_{-} - S_{+} = \sum_{f} \left| \left\langle f \mid \hat{O}_{-}^{\lambda} \mid i \right\rangle \right|^{2} - \sum_{f} \left| \left\langle f \mid \hat{O}_{+}^{\lambda} \mid i \right\rangle \right|^{2}$$

$$=\frac{2\lambda+1}{4\pi}\left(N\left\langle r^{2}\right\rangle_{n}-Z\left\langle r^{2}\right\rangle_{p}\right)$$

Results of MDA

- MD analysis of ⁹⁰Zr(p,n) at 295 MeV
 - Almost L=0 for GTGR region (no background)
 - Fairly large L=0 (GT) strength up to 50 MeV excitation
- GT quenching problem
 - Configuration mixing (2p2h) plays major role
 - Δh^{-1} coupling plays minor role

T.Wakasa et al., Phys.Rev.C55, 2909(1997)

Results of MDA for ⁹⁰Zr(p,n) & (n,p) at 300 MeV (K. Yako et al., PLB 615, 193 (2005))

- Multipole Decomposition (MD) Analyses
 - (p,n)/(n,p) data have been analyzed with the same MD technique
 - (p,n) data have been re-analyzed up to 70 MeV
- Results
 - (p,n)
 - Almost L=0 for GTGR region (No Background)
 - Fairly large L=0 (GT) strength up to 50 MeV excitation
 - (n,p)
 - L=0 strength up to 30MeV

Hartree-Fock results

	SIII	SGII	SkI3	exp
r(p)	4.257	4.198	4.174	
r(ch)	4.321	4.263	4.24	4.258+/-0.008
r(n)	4.312	4.253	4.28	
r(n)-r(p)	0.055	0.055	0.106	0.09+/-0.07
S(-)-S(+)	146.7	144	156.9	147+/-13

Spin-Dipole sum rule value

SIII			SGII			SkI3			exp		
S(-)	S(+)	S(-)-S(+)	S(-)	S(+)	S(-)-S(+)	S(-)	S(+)	S(-)-S(+)	S(-)	S(+)	S(-)-S(+)
38. 76	22. 78	15. 98	38	22	15.86	36.6	19.1	17.48			
104. 3	56. 51	47.79	104	56	47.77	121	68.2	52.64			
141.4	55.07	86. 33	129	49	79.23	139	51.1	87.93			
284. 5	134.4	150. 1	271	128	142.9	296	138	158	271	124	147(13)

0 -

1 -

2-

sum

Summary I

- Nuclear incompressibility K is determined empirically to be K~230MeV
- 2. A clear correlation between neutron skin thickness and neutron matter EOS
- 3. Neutron skin thickness is large in neutron-rich unstable nuclei, but the correlation is weak.
- 4. There is also a clear correlation between the neutron skin thickness and the symmetry energy coefficient.
- 5. The pressure of RMF is higher than that of SHF in general.
- 6. The SD strength gives a critical information both on the neutron EOS and mean field models.
- S. Yoshida and HS, Phys. Rev. C69, 024318 (2004), C73,024318(2006).
- K. Yako, H. Sakai and HS, Phys. Rev. C74, 051303(2006)

Summary II

- 1. Correlation between spin-dipole excitations and pressure of neutron EOS is pointed out.
- Spin-dipole strength are studied by RPA calculations and compared with (p,n) and (n,p) inelastic scattering data on ⁹⁰Zr.
- 3. Calculated results show a strong 1⁻ peak at high excitation energy, but it is missing in the experimental data of (p,n)

reaction. \longrightarrow (2p-2h correlations ?).

- 4. Experimental study of spin-dipole strength of Zr and Pb probe soft neutron matter EOS.
- 5. Need more works!