

ガンマ線分光による核異性体研究

日本原子力研究開発機構 量子ビーム応用研究部門

静間俊行

核異性体(アイソマー)とは

通常(10⁻¹⁵~10⁻¹²秒)よりも長い寿命を持つ核の励起状態

スピンギャップアイソマー、核分裂アイソマー、Kアイソマー

なぜ興味が持たれているのか?

1.核構造の詳細な情報が得られる

励起エネルギー、寿命、g因子等の測定から一粒子ポテンシャル、 変形度、対エネルギーなどの核構造情報を得ることが可能

実験上のメリット

比較的長い寿命をもつため、回路や物理的遮蔽により他の遷移との識別が可能 核反応メカニズムの解明(アイソマー生成比の測定) 核破砕反応、光核反応...

2.特異なアイソマーの存在

長寿命アイソマー:^{180m}Ta、^{176m}Lu、^{178m}Hf... 超重元素探索:τ(アイソマー) > τ(基底状態)

3. 応用研究

光核反応によるアイソマー放射化同位体分析

Kアイソマー

スピン選択則 λ ΔI=I_i-I_f

K選択則(K selection rule) $\lambda \quad \Delta K = K_i - K_f$

Kアイソマー崩壊の特徴

- 1.異なるK量子数をもつ状態間の 遷移はK量子数の差が最小に なるように起きる。
- 2.K量子数の差が大きな遷移は 強く禁止される。

長寿命核異性体の存在

^{178m}Hf K^π=16⁺ 半減期31年 ^{180m}Ta K^π=9⁻ 半減期>1.2×10¹⁵年

Hindrance factor

- $F=T_{\gamma}/T_{W}$ T_{γ}: partial γ -ray half-life T_W: ワイスコップ値
- *f*_v=*F*^{1/v} ν=ΔK-λ: *K*禁止の度合い

経験値 f_v=10~100 △Kが1増す毎に半減期が10~100倍増加する △Kが大きい場合、非常に長い半減期をもつ

K アイソマーの異常崩壊

¹⁷⁴Hf、¹⁷⁶W、¹⁸²Os核において、経験則を大きく破る遷移の観測

 $f_{v}=2.3 \sim 5.5 \Delta K=14, 25$

経験値(f,=10)と比べ、10⁴~10¹⁰倍の遷移強度

P.Chowdhury et al., NPA485(1988)136

△K=10以上のE2遷移

	T _{1/2}	E_{γ} (keV)	ΔK	F	Fν	
• ¹⁷² Hf	<2ns	1797	12	<2.1x10 ⁵	<3.4	
● ¹⁷⁴ Hf	3.7µs	627	14	4.7x10 ⁶	3.6	
		1291	14	3.9x10 ⁸	5.2	
• 176W	35ns	1122	14	>1.5x10 ⁵	>2.7	
		1541	14	>1.7x10 ⁶	>3.3	
• 177W	<1ns	1764	11	<2.7x10 ⁵	<4.0	T.Shizuma et al., ΝΡΔ626(1997)760
● 178₩	<1ns	1571	12	<1.4x10 ⁴	<2.6	
179 W	750ns	576	14	7.9x10 ⁵	3.1	
182W	1.4µs	1086	10	6.2x10 ⁵	5.3	
● ¹⁸² Os	6ns	1530	16	1.2x10 ⁵	2.3	_
• ¹⁸³ Os	<3ns	1768	12	<1.1x10 ⁵	<3.2	T.Shizuma et al.,
	24ns	1079	17	1.8x10 ⁴	3.4	NPA090(2001)33
¹⁸⁴ Os	20ns	1092	10	1.8x10 ⁴	3.4	
● ¹⁸⁶ OS	24ns	1142	10	<9.6x10 ³	<3.1	

ガンマトンネリング模型 K.Narimatsu, Y.R.Shimizu and T.Shizuma NPA601(1996)69 $\gamma = 0^{\circ}$ β-γ变形座標 β γ 0° 基底状態 ~ 0.25 基底状態 回転バンド $\gamma = -120^{\circ}$ -120° アイソマー ~0.25 ガンマ変形方向の自由度で区別可能 K核異性体 トンネリングによる遷移確率 同スピン・パリティをもつ

遷移確率(F値)の比較 $F=T_v/T_w$

Actionの中性子数依存性 $\log F_{cal} \propto -\log[B(E2)^{cal}] \propto 2W/\hbar$ $F=T_{\gamma}/T_{W}$

T.Shizuma, Y.R.Shimizu et al., J.Nucl.Sci.&Tech. 39(2002)1137

Double mid-shell 核 ¹⁷⁰₆₆Dy₁₀₄

Z: 50 ~ 82、N: 82 ~ 126

Potential Energy Surface

半減期31年

半減期1秒以上のアイソマー

中性子過剰領域の核分光実験

核融合反応

高スピン・高励起状態の生成に適しているが、複合核形成の後、主に 中性子放出により脱励起するため、中性子不足側の核が生成されや すい。

□ ⇒ 多核子移行反応による中性子過剰核の生成

深部非弹性散乱反応

N/Z平衡、大きな角運動量移行

生成核種が多く、断面積が小さい

Recoil shadow法との組み合わせ

核子移行反応 (18O,16O)反応を用いた2中性子移行反応

発熱反応だが、断面積が小さ $N(\sigma < \sim 1 \text{ mb})$

→ 反応チャンネルの同定が必要

深部非弾性散乱反応実験

核異性体探索---Recoil Shadow法による遅延ガンマ線計測

散乱粒子スペクトル

遅延ガンマ線スペクトル

シリコン+時間ゲート

コインシデンススペクトル

¹⁸⁷Wの準位様式

PRC71(2005)067301.

減衰曲線

核子移行反応実験

原子力機構 タンデム + ブースター加速器

¹⁸O (180MeV) +¹⁸⁶W、¹⁸¹Ta 発熱反応、断面積が小さい(σ < ~ 1mb)

ビーム電流: 0.1~0.3 pnA

ターゲット: Self-supporting ¹⁸⁶W (0.4mg/cm² x 2)

nat.Ta foil (3.9mg/cm2)

シリコンE-△E検出器による散乱粒子測定

反応チャンネルの識別

ゲルマニウム検出器:7~8台

Si- γ ; 1.6 × 10⁸ events

Si- γ - γ ; 6.8 × 10⁷ events

Si E-∆Eプロット

ガンマ線スペクトル

ガンマ線コインシデンススペクトル

188Wの準位様式

基底状態回転バンドを8+準位まで観測

新たに、ガンマ振動バンド、8重極振動バンド、2準粒子準位を観測

T.Shizuma et al., EPJA30(2006)391

W同位体の基底状態回転バンドの比較

¹⁹⁰W: Zs.Podolyak et al., PLB491(2000)225

非軸対称性の度合い

Calculated by M.Oi

187Wの準位様式

¹⁸⁶W(¹⁸O,¹⁷O), ¹⁸⁶W(¹⁸O,¹⁶O+n)

187W

1.5µ秒アイソマー: I^π=11/2⁺, E_x=411keV T.Shizuma et al., PRC71(2005)067301.

I^π=9/2⁺, E_x=798keV **準粒子配位**:9/2⁺[624]

¹⁸⁷W、近傍核(¹⁸⁶W,¹⁸⁸W)の多準粒子配位を決定する上で重要

Blocked BCS模型を用いた準粒子配位計算

多準粒子配位の理論計算 Woods-Saxon potential Lipkin-Nogami treatment

一粒子準位、対エネルギー

K^{π}	Configuration ^(a)	$E_{ m mqp}\ m (keV)$	$E^{ m (b)}_{ m res} \ m (keV)$	$E^{(m c)}_{ m cal} \ ({ m keV})$	観測値)
3^{+}	$\pi: 1/2^+, 5/2^+$	1871	-150	1721	
5^{+}	$ u: 1/2^-, 9/2^-$	1768	-150	1618	1538 keV
5^-	$ u:-1/2^{-(\mathbf{d})}, 11/2^+$	1907	-150	1757	
6^+	$ u: 3/2^{-}, 9/2^{-}$	1531	+150	1681	1733 keV
7^{-}	$ u: 3/2^-, 11/2^+ $	1694	-150	1544	
8+	$ u:7/2^-,9/2^- $	1932	-150	1782	
8-	$\pi:7/2^+,9/2^-$	2606	-120	2486	
9-	$ u:7/2^-,11/2^+$	2062	+184	2246	
10^{-}	$ u:9/2^-,11/2^+$	2075	-150	1925	

(a) Neutrons (ν): 1/2⁻[510], 3/2⁻[512], 7/2⁻[503], 9/2⁻[505], 11/2⁺[615]; protons (π): 1/2⁺[411], 5/2⁺[402], 7/2⁺[404], 9/2⁻[514].

予想されるHigh-K イラストアイソマー

 $I^{\pi}=7^{-}, E_{x}=1544 \text{ keV}$ $I^{\pi}=7^{-}, E_{x}=1517 \text{ keV}, T_{1/2}=18 \mu \text{s}$ $I^{\pi}=10^{-}, E_{x}=1925 \text{ keV}$ $I^{90}\text{Os:} I^{\pi}=10^{-}, E_{x}=1705 \text{ keV}, T_{1/2}=9.9 \text{m}$ $I^{92}\text{Os:} I^{\pi}=10^{-}, E_{x}=2015 \text{ keV}, T_{1/2}=5.9 \text{s}$

I^π=10⁺, *E*_x=2614 keV,(vi_{13/2})²;9/2+[624]⊗11/2+[615]

10-アイソマー

v2/9⁻[505],11/2⁺[615]

¹⁹⁰W: P.M.Walker et al., PLB635(2006)286

(vi_{13/2})²アイソマー

10+:9/2+[624] 11/2+[615], 12+:11/2+[615] 13/2+[606]

Collective oblate isomers

P.M.Walker et al., PLB635(2006)286

Higher spins, more neutron-rich nuclei

まとめ

核子移行反応を用いた中性子過剰核のガンマ線分光実験

原子力機構 タンデム + ブースター加速器

深部非弹性散乱、¹⁸O核移行反応、(非弹性散乱反応)

¹⁸⁷W、¹⁸⁸W、¹⁸²Ta、¹⁸³Ta、¹⁷⁹Lu、(¹⁸⁶W、¹⁸⁷Re)など

質量数180領域中性子過剰核のアイソマー

N=104 ~ 106, Z=66 ~ 70

¹⁷⁰₆₆Dy₁₀₄ 近傍でトンネリング確率が最大となる

Double mid-shell 核 高スピン核異性体の存在の可能性?

N=114 ~ 116, Z=74 ~ 80

v9/2+[624], 11/2+[615], 13/2+[606], 9/2-[505]

¹⁹⁰W,¹⁹²Os 12⁺:v11/2⁺[615]⊗13/2⁺[606]

オブレートアイソマー、非軸対称変形

¹⁷⁰Er(¹⁸O,²⁰Ne)¹⁶⁸Dy、¹⁷⁶Yb(¹⁸O,²⁰Ne)¹⁷⁴Er、¹⁹²Os(¹⁸O,²⁰Ne)¹⁹⁰W より重いビーム(¹³⁶Xeなど)を用いた深部非弾性散乱、非弾性散乱反応実験 核破砕反応、²⁰⁸Pb 1GeV/A、²⁰⁸Pb(⁹Be,4p)²⁰⁴Pt (N=126)