

東北大サイクロにおける γ 線核分光

東北大学サイクロトロン RI センター 東北大学大学院理学研究科 鈴木 智和

February 19-20, 2006

Contents

1. Hyperball-2

- Detectors, Advantages, Disadvantages
- BGO anti-Compton supressor
- FERA-VME DAQ system
- 2. Nuclear Chirality
 - Criteria for Nuclear Chirality
 - Lifetime Measurements in the $A\sim\!\!130$ region
 - Chiral Candidates and Possible Existance in the $A\sim\!\!100$ region
- 3. Experiments with Hyperball-2
 - Spectra, Linear Polarization
 - Experiment Result
- 4. Possible experiments for nuclear chirality in RCNP

Hyperball-2

- Total of 20 detectors
 - Photo peak efficiency ${\sim}4\%$ at 1MeV
 - * Eurisys Coaxial Ge + BGO (R.E. 60%, $\times 4)$
 - * ORTEC Coaxial Ge + BGO (R.E. 60%, $\times 10$)
 - * Eurisys Clover Ge + BGO (R.E. 20%×4,125% with addback ×4)
- Advantages
 - Large total photo peak efficiency (γ - γ - γ coincidence measurement)
 - Possible to use with high intensity (\sim 10pnA) beam (high counting rate).
- Disadvantages
 - Few angles
 - * Detectors placed mostly around 90° . (lower angular correlation sensitivity)
 - Detectors in upper and lower ring point off center

BGO anti-Compton suppressor

	Peak/Total	BGO OFF	BGO ON
12 BGO + 1 Ge = 13 TUL IN channels	Normal type	\sim 18%	$\sim 32\%$
\longrightarrow 78 TUL IN channels for 6 Clovers	Clover(individual)	$\sim \! 10\%$	${\sim}15\%$
32 ECL IN $+$ 16 NIM IN $=$ 48 IN per TUL	Clover(add-back)	$\sim 20\%$	$\sim 30\%$

FERA-VME Double Buffer Data Taking System

- Switching of two memory modules controled by TUL
 - No dead time for data transfer from ADC/TDC to UMEM (VME universal memory module developed by Osaka Univ.)
 - For 1 event data size = 100byte
 - FERA ADC, TDC \rightarrow UMEM 29 μ sec/event
 - * Conversion time of ADC 24μ sec/event
 - * data transfer(20Mbyte/sec) 5μ sec/event
 - UMEM \rightarrow PC (5Mbyte/sec) 20 μ sec/event

Nuclear Chirality

- For mass 80 region $(\pi g_{9/2} \otimes \nu g_{9/2}^{-1})$
 - 1. 1-axis: longest axis of the triaxial shape j_n ; neutron-hole in a high- j_n shell
 - 2. 2-axis: shortest axis
 - j_p ; proton-particle in a high- j_p shell
 - 3. 3-axis : intermediate axis of the triaxial shape R; core rotation
- Three perpendicular angular momentum can be formed into two systems of handedness, the right-handed or the lefthanded system

Criteria for Nuclear Chirality

- Nearly degenerate $\Delta I = 1$ twin bands with the same parity
 - observed in some odd-odd and odd-A nuclei in $A \sim 130$ region (proton $h_{11/2}$ particle and neutron $h_{11/2}$ hole configuration) * 124,126,128,130,132 Cs, 130,132,134 La, 132,134 Pr, 136 Pm, 138,140 Eu, 135 Nd, 135 Ce
 - observed in some odd-odd and odd-A nuclei in $A \sim 100$ region (proton $g_{9/2}$ hole and neutron $h_{11/2}$ particle configuration) * ${}^{107}Ag$, ${}^{102,103,104,105,106}Rh$, ${}^{100}Tc$
- $B(E2: I \rightarrow I-2)_{in,out}$ and $B(M1: I \rightarrow I-2)_{in,out}$ values are the same or similar between both bands.
 - lifetime measurements are required.
 * measured in ¹³⁴Pr, ¹³²La, and ¹²⁸Cs
 - * GS plus plunger experiment done for ^{103,104}Rh (RDDS; Recoil Distance Doppler shit Method)

Lifetime measurements in the mass 130 region

GAMMASPHERE GSFMA169

Lifetime measurement of candidates chiral members in the $A \sim \! 100$ region

- Recoil Distance Doppler Shift Method (RDDS)
 - GAMMASPHERE Ge detectors array
 - (Total 17-rings, 110 detectors with BGO-ACS)
 - Cologne univ. plunger device
- Inverse Kinematics Reaction
 - ${}^{11}B({}^{96}Zr,xn){}^{104,103}Rh(x=3,4)$
 - $E(^{96}\text{Zr}) = 330\text{MeV}$ from ATLAS accelerator at ANL
 - 7 distances (8,15,23,35,50,75,100 μ m)

Chiral Candidates and possible existence in the $A \sim 100$ region

From J. Meng et. al. Phys. Rev. C 73 (2006) 037303

From C. Vaman et. al. Phys. Rev. Lett. 92 (2004) 032501

Nuclear Chirality in the $A \sim 80$ region

• proton $h_{11/2}$ particle and neutron $h_{11/2}$ hole configuration

• proton $g_{9/2}$ particle and neutron $g_{9/2}$ hole configuration

Search for chiral doublet in the new mass region

- 79 Kr (odd-A, $\pi g_{9/2}^2 \otimes
 u g_{9/2}^{-1}$)
- 80 Br (odd-odd, $\pi g_{9/2} \otimes
 u g_{9/2}^{-1}$)

Experiment with Hyperball-2 in CYRIC

- Course 33 at CYRIC, Tohoku University
- Reaction and target
 - $\begin{array}{l} \ ^{70}{\rm Zn}(^{13}{\rm C},4{\rm n})^{79}{\rm Kr} \\ * \ {\rm Beam:} \ ^{13}{\rm C}^{3+} \ @ \ 65{\rm MeV} \ {\rm from} \ 930 \ {\rm cyclotron} \\ * \ {\rm Target:} \ 500\mu {\rm g/cm}^2 \times 2 \ 70\% \ {\rm enriched} \ ^{70}{\rm Zn} \ ({\rm self-supporting, \ stacked}) \\ \ ^{70}{\rm Zn}(^{13}{\rm C},{\rm p2n})^{80}{\rm Br} \\ * \ {\rm Beam:} \ ^{13}{\rm C}^{3+} \ @ \ 53{\rm MeV} \ {\rm from} \ 930 \ {\rm cyclotron} \\ * \ {\rm Target:} \ 1{\rm mg/cm}^2 \ 70\% \ {\rm enriched} \ ^{70}{\rm Zn} \ ({\rm Pb} \ {\rm backing,} \ 10{\rm mg/cm}^2) \end{array}$
- HPGe array: Hyperball-2 for γ ray detection
- trigger: γ - γ - γ (triple coincidence)

Deduced Level Scheme

February 19-20, 2006

 γ - γ - γ spectra

Relative spin-parity assignment

Vertical

- Linear polarization can be extracted with clover detectors to infer relative spin and parity.
 - Sign of P can be known without knowing sensitivity Q(E).

Horizontal
 Vertical

15

Discussion of result:⁷⁹Kr

Ι	27/2	29/2	31/2	33/2
$E(I)_P - E(I)_Y$ in keV	811	1247	1079	1532

- If two bands are chiral partners...
 - Nearly degenerate between two bands.
 - Single particle states should be the same
 - S(I) = [E(I) E(I 2)]/2I should be smoothly varying.

⁸⁰Br; ⁷⁰Zn(¹³C,p2n)@54MeV

Possible experiments in RCNP

- 1. RCNP can provide various heavy ion beam.
- 2. The germanium detectors array will be installed in EN cource.
 - 15 detectors

```
\iff \gamma \text{-} \gamma \text{-} \gamma \text{-} \text{coincidence}
```

• 4 angles

 \iff determine transition multipolarity with angular distribution (DCO ratio).

- The segmented detector is placed 90°.
 ↔ determine electric or magnetic transition with leniar polarization.
- Lifetime measurement with DSAM method for higher spin states.

• ¹¹²In

- ¹¹⁰Cd(α,pn)... M. Eibert et.al. J. Phys. G: Nucl. Phys. 2 (1976) L203
 - ⁹⁶Zr(²²Ne,p5n)
 - ⁷⁰Zn(⁴⁸Ca,p5n)
- ¹⁰⁸Ag (¹⁰⁹Ag,¹¹⁰Ag)
 - ¹⁰⁰Mo(¹¹B,3n)... F.R. Espinoza-Quiñones et. al.
 Phys. Rev. C 52 (1995)
 ⁹⁶Zr(¹⁵N,3n)
 - 96 Zr(18 O,p5n)

 $\mathit{E}_{beam}\sim\!\!4\text{MeV}/\text{u}$

Summary

- 1. Hyperball-2
- 2. Nuclear Chirality
 - Criteria for Nuclear Chirality
 - Lifetime Measurements
 - Chiral Candidates and Possible Existance in the $A\sim\!\!100$ region
- 3. Experiments with Hyperball-2
 - γ - γ - γ coincidence, Linear Polarization
 - The observed side band structures in 79 Kr are of non chiral.
- 4. 112 In is best idea for Chiral doublet search in RCNP.

Nuclear Chart in the $A \sim 100$ region

⁹⁶ In	⁹⁷ In	⁹⁸ In	⁹⁹ In	¹⁰⁰ In	¹⁰¹ In	¹⁰² In	¹⁰³ In	¹⁰⁴ In	¹⁰⁵ In	¹⁰⁶ In	¹⁰⁷ In	¹⁰⁸ In	¹⁰⁹ In	¹¹⁰ In	¹¹¹ In	¹¹² In	¹¹³ In	¹¹⁴ In	¹¹⁵ In	¹¹⁶ In	49
⁹⁵ Cd	⁹⁶ Cd	⁹⁷ Cd	⁹⁸ Cd	⁹⁹ Cd	$^{100}\mathrm{Cd}$	$^{101}\mathrm{Cd}$	102 Cd	103 Cd	¹⁰⁴ Cd	105 Cd	106 Cd	107 Cd	108 Cd	$^{109}\mathrm{Cd}$	110 Cd	¹¹¹ Cd	112 Cd	113 Cd	¹¹⁴ Cd	115 Cd	48
⁹⁴ Ag	⁹⁵ Ag	⁹⁶ Ag	⁹⁷ Ag	⁹⁸ Ag	⁹⁹ Ag	¹⁰⁰ Ag	¹⁰¹ Ag	¹⁰² Ag	¹⁰³ Ag	¹⁰⁴ Ag	¹⁰⁵ Ag	¹⁰⁶ Ag	¹⁰⁷ Ag	¹⁰⁸ Ag	¹⁰⁹ Ag	¹¹⁰ Ag	¹¹¹ Ag	¹¹² Ag	¹¹³ Ag	¹¹⁴ Ag	47
⁹³ Pd	⁹⁴ Pd	⁹⁵ Pd	⁹⁶ Pd	⁹⁷ Pd	⁹⁸ Pd	99Pd	¹⁰⁰ Pd	101 Pd	¹⁰² Pd	¹⁰³ Pd	¹⁰⁴ Pd	¹⁰⁵ Pd	¹⁰⁶ Pd	¹⁰⁷ Pd	¹⁰⁸ Pd	¹⁰⁹ Pd	110 Pd	¹¹¹ Pd	112 Pd	¹¹³ Pd	46
⁹² Rh	⁹³ Rh	⁹⁴ Rh	⁹⁵ Rh	⁹⁶ Rh	⁹⁷ Rh	98Rh	99Rh	¹⁰⁰ Rh	¹⁰¹ Rh	¹⁰² Rh	¹⁰³ Rh	¹⁰⁴ Rh	¹⁰⁵ Rh	¹⁰⁶ Rh	¹⁰⁷ Rh	¹⁰⁸ Rh	¹⁰⁹ Rh	¹¹⁰ Rh	¹¹¹ Rh	¹¹² Rh	45
⁹¹ Ru	⁹² Ru	⁹³ Ru	⁹⁴ Ru	⁹⁵ Ru	⁹⁶ Ru	⁹⁷ Ru	⁹⁸ Ru	⁹⁹ Ru	¹⁰⁰ Ru	¹⁰¹ Ru	¹⁰² Ru	¹⁰³ Ru	¹⁰⁹ Ru	¹⁰⁵ Ru	¹⁰⁶ Ru	¹⁰⁷ Ru	¹⁰⁸ Ru	¹⁰⁹ Ru	¹¹⁰ Ru	¹¹¹ Ru	44
⁹⁰ Tc	⁹¹ Tc	⁹² Tc	⁹³ Tc	⁹⁴ Tc	⁹⁵ Tc	⁹⁶ Tc	⁹⁷ Tc	⁹⁸ Tc	⁹⁹ Tc	¹⁰⁰ Tc	¹⁰¹ Tc	102 Tc	¹⁰³ Tc	¹⁰⁴ Tc	¹⁰⁵ Tc	¹⁰⁶ Tc	¹⁰⁷ Tc	¹⁰⁸ Tc	¹⁰⁹ Tc	110 Tc	43
⁸⁹ Mo	⁹⁰ Mo	⁹¹ Mo	⁹² Mo	⁹³ Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	⁹⁷ Mo	⁹⁸ Mo	⁹⁹ Mo	¹⁰⁰ Mo	¹⁰¹ Mc	¹⁰² Mc	¹⁰³ Mo	¹⁰⁴ Mo	¹⁰⁵ Mo	¹⁰⁶ Mo	¹⁰⁷ Mc	¹⁰⁸ Mo	¹⁰⁹ Mo	42
⁸⁸ Nb	⁸⁹ Nb	⁹⁰ Nb	⁹¹ Nb	⁹² Nb	⁹³ Nb	⁹⁴ Nb	⁹⁵ Nb	⁹⁶ Nb	⁹⁷ Nb	⁹⁸ Nb	⁹⁹ Nb	100 Nb	¹⁰¹ Nb	¹⁰² Nb	¹⁰³ Nb	¹⁰⁴ Nb	¹⁰⁵ Nb	¹⁰⁶ Nb	¹⁰⁷ Nb	¹⁰⁸ Nb	41
⁸⁷ Zr	⁸⁸ Zr	⁸⁹ Zr	⁹⁰ Zr	⁹¹ Zr	92 Zr	⁹³ Zr	⁹⁴ Zr	⁹⁵ Zr	⁹⁶ Zr	⁹⁷ Zr	⁹⁸ Zr	⁹⁹ Zr	¹⁰⁰ Zr	¹⁰¹ Zr	102 Zr	103 Zr	104 Zr	105 Zr	106 Zr	107 Zr	40
⁸⁶ Y	⁸⁷ Y	⁸⁸ Y	⁸⁹ Y	⁹⁰ Y	⁹¹ Y	⁹² Y	⁹³ Y	⁹⁴ Y	⁹⁵ Y	⁹⁶ Y	⁹⁷ Y	⁹⁸ Y	⁹⁹ Y	^{100}Y	^{101}Y	^{102}Y	¹⁰³ Y	104 Y	¹⁰⁵ Y	¹⁰⁶ Y	39
⁸⁵ Sr	⁸⁶ Sr	⁸⁷ Sr	⁸⁸ Sr	⁸⁹ Sr	⁹⁰ Sr	⁹¹ Sr	⁹² Sr	⁹³ Sr	⁹⁴ Sr	⁹⁵ Sr	⁹⁶ Sr	⁹⁷ Sr	⁹⁸ Sr	⁹⁹ Sr	¹⁰⁰ Sr	¹⁰¹ Sr	102 Sr	¹⁰³ Sr	¹⁰⁴ Sr	¹⁰⁵ Sr	38
⁸⁴ Rb	⁸⁵ Rb	⁸⁶ Rb	⁸⁷ Rb	⁸⁸ Rb	⁸⁹ Rb	⁹⁰ Rb	⁹¹ Rb	⁹² Rb	⁹³ Rb	⁹⁴ Rb	⁹⁵ Rb	⁹⁶ Rb	⁹⁷ Rb	⁹⁸ Rb	⁹⁹ Rb	¹⁰⁰ Rb	101 Rb	¹⁰² Rb	¹⁰³ Rb	¹⁰⁴ Rb	37
⁸³ Kr	⁸⁴ Kr	⁸⁵ Kr	86 Kr	⁸⁷ Kr	⁸⁸ Kr	⁸⁹ Kr	⁹⁰ Kr	⁹¹ Kr	⁹² Kr	⁹³ Kr	⁹⁴ Kr	⁹⁵ Kr	⁹⁶ Kr	⁹⁷ Kr	⁹⁸ Kr	99 Kr	¹⁰⁰ Kr	¹⁰¹ Kr	102 Kr	103 Kr	36
⁸² Br	⁸³ Br	⁸⁴ Br	⁸⁵ Br	⁸⁶ Br	⁸⁷ Br	⁸⁸ Br	⁸⁹ Br	⁹⁰ Br	⁹¹ Br	⁹² Br	⁹³ Br	⁹⁴ Br	⁹⁵ Br	⁹⁶ Br	⁹⁷ Br	⁹⁸ Br	⁹⁹ Br	¹⁰⁰ Kr	¹⁰¹ Kr	¹⁰² Kr	35
47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	

RCNP 入射サイクロトロン更新で展開される新しい研究

19