### 高分解能(*p*,*p*')反応による*M1*,*E1* 励起状態の研究

A. Tamii

Research Center for Nuclear Physics, Osaka University

入射サイクロトロン更新WS, February 19-20, 2007 at RCNP

Collaborators

RCNP, Osaka University

<u>A. Tamii, H. Matsubara</u>, T. Adachi, K. Fujita, H. Hashimoto, K. Hatanaka, K. Nakanishi, Y. Sakemi, Y. Shimizu, Y. Tameshige and M. Yosoi

Dep. of Phys., Osaka University <u>Y. Fujita</u>

Dep. of Phys., Kyoto University H. Sakaguchi and J. Zenihiro

*CNS, Univ. of Tokyo* T. Kawabata and Y. Sasamoto

CYRIC, Tohoku University M. Itoh

Dep. of Phys., Kyushu University M. Dozono

NSCL, Michigan State Univ. Y. Shimbara *Univ. of Gent* L.A. Popescu

*IFIC-CSIC, Valencia* B. Rubio and A. Perez

Univ. of Witwatersrand J. Carter

*iThembaLABs* H. Fujita and F.D. Smit

*IKP, Darmstadt* P. von Neumann-Cosel, A. Richter, I. Poltoratska, V. Ponomarev and K. Zimmer <sub>2</sub>

# Contents

- High-Resolution (*p*,*p*') scattering experiment at forward angles: motivation
- Experiment and Spectra
- M1 and E1 excitations in <sup>208</sup>Pb

### (開発・実験はAVF更新をまたいで進められた)

# High-resolution (*p*,*p*') scattering exeperiment at forward angles

# Motivation

- 1. Systematic study of M1 excitation: strength distribution and quenching for each *T*=0 and *T*=1 excitation. M1:  $0^+ \rightarrow 1^+$ ,  $\Delta L=0$ ,  $\Delta S=1$ analogous to Gamow-Teller
- 2. Fragmentation mechanism of M1 Strengths.
- 3. New or exotic type excitations in nuclei. Toroidal type excitations?
- 4. Nuclear matrix element of (v,v')E1 strengths around  $S_n$ supernovae, nucleosynthesis



G.M. Crawley et al., PRC39(1989)311



<sup>48</sup>Ca(p,p') at IUCF at 0 deg., Y. Fujita *et al.* 5

Merit of (p,p') scattering measurement at 0 deg. (1/2)

- $\Delta L=0$  excitations are favored at 0° (expt. Coulomb excitation of E1)
- $\Delta L$  information can be obtained from angular distribution of  $d\sigma/d\Omega$  at forward angles.
- $d\sigma/d\Omega$  at 0° is approximately proportional to the relevant reduced matrix elements.

$$\frac{d\sigma}{d\Omega} = K \cdot N \cdot \left| J^{ST}(q) \right|^2 \cdot B^{ST}(q,\omega)$$

•  $\Delta S$  is model-independently identified by measuring polarization transfer coefficients at 0° ( $\Delta S$  decomposition of the strengths)

$$D_{SS} + D_{NN} + D_{LL} = \begin{cases} -1 \text{ for } \Delta S = 1 & \text{e.g. M1} \\ 3 \text{ for } \Delta S = 0 & \text{e.g. E1} \end{cases}$$
 T.Suzuki, PTP103(2000)859

- High-resolution measurement (20 keV) is possible.
- Other reaction data, *e.g.* (d,d'),  $(\alpha,\alpha')$ ,  $(^{3}\text{He}, t)$ ,  $(\gamma,\gamma')$  and (e,e'), provide complementary information

### Merit of (p,p') scattering measurement at 0 deg. (2/2)

- Excitation strengths can be measured in a wide  $E_x$  range (5< $E_x$ <25 MeV) by a "single-shot" measurement (missing-mass spectroscopy)
  - independent of the decay channel
  - flat and high detection efficiency
  - total width (or total excitation strength)
- Comparison with (*e*,*e*')
  - complimentary:  $B(\sigma)$  by  $(p,p') \Leftrightarrow B(M1)$  by (e,e')
  - no radiative tail
  - large cross-section
  - reaction mechanism is not "very well-known"

#### Demerits

- Reduction of instrumental B.G. is essential ... requires a high-quality halo-free beam and beam stability
- Absolute normalization of the strength is not very straightforward



R.M. Laszewski and J. Wambach, Comments Nucl. Part. Phys. 14 (1985) 321.

入射サイクロトロン更新WS, February 19-20, 2007 at RCNP

# Experiment

# **Beam line WS-course**

T. Wakasa et al., NIM A482 ('02) 79.





入射サイクロトロン更新WS, February 19-20, 2007 at RCNP

# Spectrometers in the 0-deg. experiment setup



# **Beam Tuning**

• Beam energy spread was checked by  ${}^{197}Au(p,p_0)$  elastic scattering in the achromatic transport mode

**40-60 keV** (FWHM) at  $E_p$ =295 MeV

It corresponds to a beam spot size of 3~5 mm on target in the dispersive transport mode.

- Halo free beam tuning at 0 deg. (achro. beam) Single turn extraction of the AVF cyclotron
- Tuning of dispersion matching

20 keV (FWHM) at  $E_p$ =295 MeV

It takes  $\sim 2$  days for the beam tuning.

Comment: Combination of high-res. measurement and decay measurement is now becoming feasible.





Beam spot in the dispersive mode

# **Background Subtraction**

Vertical positions projected at the vertical focal plane were calculated.

Background subtraction was applied by gating the Y position with true+b.g. and b.g. gates.

Linear shape of the background in the Y position spectrum is assumed.

The background spectrum seems reasonable.



## Targets and Angles

|                   | 0°         | 2.5°       | 4.5°       | 6°         | 9,12,15,18° | achrom. 0° | elastic    | thickness (mg/cm <sup>2)</sup> |
|-------------------|------------|------------|------------|------------|-------------|------------|------------|--------------------------------|
| natC              | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | Ø           | Ô          | $\bigcirc$ | 30 (partly 1.1)                |
| mylar             | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | _          | —           | —          | _          | 10                             |
| $^{13}CH_{2}$     | 0          | —          | —          | —          | —           | —          | _          | 0.7                            |
| $^{24}Mg$         | Ο          | —          | —          | —          | —           | —          | —          | 1.8                            |
| <sup>25</sup> Mg  | Ο          | Ο          | 0          | _          | —           | —          | —          | 4.00                           |
| <sup>26</sup> Mg  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | —           | —          | —          | 1.55                           |
| $^{27}Al$         | 0          | —          | —          | _          | —           | —          | _          | 1.8                            |
| <sup>28</sup> Si  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | Ø           | Ô          | $\bigcirc$ | 1.86 (58.5 a part of elastic)  |
| <sup>40</sup> Ca  | Ο          | —          | —          | —          | —           | —          | —          | 13                             |
| <sup>48</sup> Ca  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | _          | —           | —          | —          | 1.9                            |
| <sup>58</sup> Ni  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | _          | —           | —          | _          | 4                              |
| <sup>64</sup> Ni  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | —          | —           | —          | —          | 4.7                            |
| <sup>90</sup> Zr  | $\Delta$   | —          | —          | —          | —           | —          | —          | 1.0                            |
| $^{120}$ Sn       | $\Delta$   | —          | —          | —          | —           | —          | —          | 2.6                            |
| <sup>208</sup> Pb | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | —           | —          | —          | 5.2                            |

O... measured,  $\bigcirc$ ... good statistics,  $\triangle$ ... poor statistics, -... not measured

# Analysis

Detailed calibrations have mostly been finished.

- Calibration of the scattering angle, solid angle.  $\Delta\theta \sim 0.6^{\circ}$
- Calibration for high energy-resolution data.  $\Delta E \sim 20 \text{ keV}$
- Background subtraction works well
- Absolute cross sections and continuous angular distribution from 0 deg to large angles

入射サイクロトロン更新WS, February 19-20, 2007 at RCNP

# Spectra





























Differences come from: orbital par of the M1 operator

Extraction of general trend by checking the orbital contribution in each state.

B(σ): (p,p') B(M1): EM probes orbital part: combination

### Inelastic Scattering from <sup>28</sup>Si at 0 degrees



# Angular Distribution of IS and IV 1<sup>+</sup> excitations

#### DWBA calculation

— DWBA, T=0 ; IS

DWBA, T=1; IV

Trans. density : A. Willis et al., PRC 43(1991)5 (by OXBASH in sd shell only) NN interaction. : Franey and Love, PRC31(1985)488. (325 MeV data) Optical potential : K. Lin, M.Sc. thesis., Simon Fraser U. 1986.

Analyzed by H. Matsubara



From angular distribution, isospin value is identified.



# Strength distribution preliminary

shell model calculation: OXBASH + USD interaction



# Total sum of the strengths preliminary

Cumulative Sum



Followings should be checked more carefully.

•  $B(\sigma)$  is determined from  $d\sigma/d\Omega(q=0)$ relying on the eff. interaction and DWIA calculation.

•Bare g-factor is used in the S.M. calculation.

Quenching Factor = 
$$\frac{\Sigma B(\sigma)_{exp}}{\Sigma B(\sigma)_{shell-model}}$$

# 入射サイクロトロン更新WS, February 19-20, 2007 at RCNP Inelastic Scattering from ${}^{12}C$

DWBA calc. Cohen Kurath Wave Function Franey Love Effective Interaction



DWBA calculations using Cohen Kurath W.F. and Franey-Love effective interaction <sub>36</sub> (parameter set at 325 MeV, red line) well reproduce the data without any normalization.

入射サイクロトロン更新WS, February 19-20, 2007 at RCNP

# M1 and E1 excitations in $^{208}$ Pb

高品質·高分解能ビームラインで展開する物理 RCNP, Osaka, 28–29 March 2000

Study of M1 excitations via the  ${}^{208}Pb(p, p')$  reaction at 0° and very forward angles

Department of Physics, University of Tokyo

A. Tamii

### Prediction of the M1 strengths in $^{208}$ Pb with 1p-1h basis

1*p*-1*h* excited states of protons  $|\pi\{h_{9/2}-h_{11/2}^{-1}\}>$  and neutrons  $|\nu\{i_{11/2}-i_{13/2}^{-1}\}>$  strongly couples to each other due to

- spin-orbit splittings of *p* and *n* orbits are similar
- orbital angular momentum l's are similar



### Fragmentation of the M1 strengths in <sup>208</sup>Pb

The low-lying strength is considered to be exhausted by a state located at 5.846 MeV. observed by (p,p') S.I. Hayakawa *et al.*, PRL49(1982)1624, (e,e'), and (d,d').

The higher-lying strength is fragmented into many tiny states by mechanisms:

- core-polarization or g.s. correlation
- coupling to 2p-2h states
- coupling to  $\Delta$ -h states
- meson exchange current

Experimentally, only a strength of ~10  $\mu_N^2$  has been observed (until 1988) comparing with theoretical predictions of ~10  $\mu_N^2$ .  $\rightarrow$  "Missing M1 strength in <sup>208</sup>Pb"



calc. by Lee and Pittel PRC11(1975)607.

### Prediction of the M1 strengths in <sup>208</sup>Pb

Many theoretical works have been done for reproducing the observed M1 strengths

- 20% of reduction spreading by the coupling to 2p-2h states: ۲ ground state correlation: 20% of reduction ٠
- coupling to  $\Delta$ -h states and MEC: ٠

20% of reduction

If all the meachanisms additively contribute,

"the best that be expected from theoretical predictions is 20  $\mu_N^2$ "

I.S. Towner, Phys. Rep 155 (1987) 263.

### Search for M1 strengths by experiments

Experimentally many reactions have been used to observe the M1 strengths:

<sup>208</sup>Pb(
$$\vec{\gamma}, \gamma$$
), <sup>208</sup>Pb( $\gamma, n$ ), <sup>207</sup>Pb( $n, n$ ), <sup>207</sup>Pb( $n, \gamma$ ),  
<sup>208</sup>Pb( $e, e'$ ), and <sup>208</sup>Pb( $p, p'$ )

In 1988, R.M. Laszewsky et al. have identified  $8.8\mu_N^2$  below Sn by a  ${}^{208}\text{Pb}(\bar{\gamma},\gamma)$  measurement. In total the higher-lying strength became  $15.6\mu_N^2$  which came closer to the "best" (smallest) theoretical prediction of  $20\mu_N^2$ .

Still the search for M1 strengths in <sup>208</sup>Pb is an important job to experimentally determine the M1 strengths and their  $E_x$  distribution.



#### 入射サイクロトロン更新WS, February 19-20, 2007 at RCNP



AVF Cyclotron Facility

### medium under focus mode

- vertical scatt. angle resolution
- background subtraction



# Preliminary Spectra

(Erased from this PDF file)

## 将来計画

- AVF-FT への期待
  - ビームのさらなる安定化
  - (偏極ビームを含めた)High-Quality ビームの高輝度化
    (当面必要なのは~ 5nA)
- 実験計画
  - <sup>208</sup>Pb DLL データの取得 (approved)
  - *sd*-shell のN=Z核のデータ取得 (H. Matsubara, proposal is submited)
  - $\gamma$ -decay のコインシデンス実験 (proposal in preparation)
  - Zr データ(偏極移行量)の取得

ビーム起因の HPGe Trigger

0.8 kcps at 1nA on 208Pb, at 560 mm from the target, threshold ~500 keV

# Summary

- Experimental method of high-resolution (*p*,*p*') measurements at forward angles is successfully developed.
  ΔE~20 keV, Δθ~0.6 deg, up to <sup>208</sup>Pb
- (*p*,*p*') at forward angles is a very power probe for studying M1, E1 and other excitations.

M1 and E1 excited states can be identified from their

- angular distribution, energy dependence, and/or spin transfer.

 $B(\sigma)$  : (p,p')

B(M1) by EM probes (e,e')  $(\gamma,\gamma')$ 

orbital part: combination