高分解能 $(p, p$＇）反応による $M 1, E 1$ 励起状態の研究

A．Tamii
Research Center for Nuclear Physics，Osaka University

Collaborators

RCNP，Osaka University
A．Tamii，H．Matsubara，T．Adachi，K．Fujita，H．Hashimoto，K．Hatanaka， K．Nakanishi，Y．Sakemi，Y．Shimizu，Y．Tameshige and M．Yosoi

Dep．of Phys．，Osaka University
Y．Fujita
Dep．of Phys．，Kyoto University
H．Sakaguchi and J．Zenihiro
CNS，Univ．of Tokyo
T．Kawabata and Y．Sasamoto
CYRIC，Tohoku University M．Itoh

Dep．of Phys．，Kyushu University M．Dozono

NSCL，Michigan State Univ．
Y．Shimbara

Univ．of Gent
L．A．Popescu
IFIC－CSIC，Valencia
B．Rubio and A．Perez

Univ．of Witwatersrand
J．Carter
iThembaLABs
H．Fujita and F．D．Smit
IKP，Darmstadt
P．von Neumann－Cosel，A．Richter，
I．Poltoratska，V．Ponomarev and K．Zimmer

Contents

－High－Resolution（p，p＇）scattering experiment at forward angles：motivation
－Experiment and Spectra
－M1 and E1 excitations in ${ }^{208} \mathrm{~Pb}$
（開発•実験はAVF更新をまたいで進められた）

High－resolution（ p, p^{\prime} ）scattering exeperiment at forward angles

Motivation

1．Systematic study of M1 excitation： strength distribution and quenching for each $T=0$ and $T=1$ excitation．

$$
\begin{aligned}
\text { M1: } & 0^{+} \rightarrow 1^{+}, \Delta \mathrm{L}=0, \Delta \mathrm{~S}=1 \\
& \text { analogous to Gamow-Teller }
\end{aligned}
$$

2．Fragmentation mechanism of M1 Strengths．

G．M．Crawley et al．，PRC39（1989）311

3．New or exotic type excitations in nuclei．Toroidal type excitations？

4．Nuclear matrix element of（ v, v^{\prime} ）
E1 strengths around S_{n}
supernovae，nucleosynthesis

${ }^{48} \mathrm{Ca}(p, p$＇$)$ at IUCF at 0 deg．，Y．Fujita et al． 5

Merit of（ p, p^{\prime} ）scattering measurement at 0 deg．（1／2）

－$\Delta L=0$ excitations are favored at 0°（expt．Coulomb excitation of E1）
－ΔL information can be obtained from angular distribution of $d \sigma / d \Omega$ at forward angles．
－$d \sigma / d \Omega$ at 0° is approximately proportional to the relevant reduced matrix elements．

$$
\frac{d \sigma}{d \Omega}=K \cdot N \cdot\left|J^{S T}(q)\right|^{2} \cdot B^{S T}(q, \omega)
$$

－ΔS is model－independently identified by measuring polarization transfer coefficients at 0°（ ΔS decomposition of the strengths）

$$
D_{S S}+D_{N N}+D_{L L}=\left\{\begin{aligned}
-1 \text { for } \Delta S=1 & \text { e.g. M1 } \\
3 \text { for } \Delta S=0 & \text { e.g. E1 }
\end{aligned} \quad\right. \text { T.Suzuki, PTP103(2000)859 }
$$

－High－resolution measurement（20 keV）is possible．
－Other reaction data，e．g．$\left(d, d^{\prime}\right),\left(\alpha, \alpha^{\prime}\right),\left({ }^{3} \mathrm{He}, t\right),\left(\gamma, \gamma^{\prime}\right)$ and $\left(e, e^{\prime}\right)$ ， provide complementary information

Merit of（ p, p^{\prime} ）scattering measurement at 0 deg．（2／2）

－Excitation strengths can be measured in a wide E_{x} range（ $5<E_{x}<25$ MeV ）by a＂single－shot＂measurement（missing－mass spectroscopy）
－independent of the decay channel
－flat and high detection efficiency
－total width（or total excitation strength）
－Comparison with（e，e＇）
－complimentary： $B(\sigma)$ by $\left(p, p^{\prime}\right) \Leftrightarrow B(M 1)$ by（ $\left.e, e^{\prime}\right)$
－no radiative tail
－large cross－section
－reaction mechanism is not ＂very well－known＂
Demerits

Sensitivity to B（M1）of various probes

R．M．Laszewski and J．Wambach，Comments Nucl． Part．Phys． 14 （1985） 321.
－Reduction of instrumental B．G．is essential
．．．requires a high－quality halo－free beam and beam stability
－Absolute normalization of the strength is not very straightforward

Experiment

Beam line WS-course

T. Wakasa et al., NIM A482 ('02) 79.

Grand-Raiden

Spectrometers in the 0－deg．experiment setup

Beam Tuning

－Beam energy spread was checked by ${ }^{197} \mathrm{Au}\left(p, p_{0}\right)$ elastic scattering in the achromatic transport mode
$40-60 \mathrm{keV}$（FWHM）at $E_{p}=295 \mathrm{MeV}$
It corresponds to a beam spot size of $3 \sim 5 \mathrm{~mm}$ on target
in the dispersive transport mode．
－Halo free beam tuning at 0 deg．（achro．beam） Single turn extraction of the AVF cyclotron

－Tuning of dispersion matching
$20 \mathrm{keV}(\mathrm{FWHM})$ at $E_{p}=295 \mathrm{MeV}$
It takes ~ 2 days for the beam tuning．
Comment：Combination of high－res．measurement and decay measurement is now becoming feasible．

Beam spot in the dispersive mode

Background Subtraction

Vertical positions projected at the vertical focal plane were calculated．

Background subtraction was applied by gating the Y position with true＋b．g．and b．g．gates．

Linear shape of the background in the Y position spectrum is assumed．

The background spectrum seems reasonable．

Targets and Angles

	0°	2.5°	$4.5{ }^{\circ}$	6°	9，12，15，18	achrom．	elastic	thickness（ $\mathrm{mg} / \mathrm{cm}^{2}$ ）
${ }^{\text {nat }} \mathrm{C}$	（	（）	（）	（）	©	（	（	30 （partly 1．1）
mylar	©	（）	（	－	－	－	－	10
${ }^{13} \mathrm{CH}_{2}$	\bigcirc	－	－	－	－	－	－	0.7
${ }^{24} \mathrm{Mg}$	\bigcirc	－	－	－	－	－	－	1.8
${ }^{25} \mathrm{Mg}$	\bigcirc	\bigcirc	\bigcirc	－	－	－	－	4.00
${ }^{26} \mathrm{Mg}$	（	（）	（	©	－	－	－	1.55
${ }^{27} \mathrm{Al}$	\bigcirc	－	－	－	－	－	－	1.8
${ }^{28} \mathrm{Si}$	©	©	©	©	©	©	©	1.86 （58．5 a part of elastic）
${ }^{40} \mathrm{Ca}$	\bigcirc	－	－	－	－	－	－	13
${ }^{48} \mathrm{Ca}$	©	（）	（	－	－	－	－	1.9
${ }^{58} \mathrm{Ni}$	©	（）	－	－	－	－	－	4
${ }^{64} \mathrm{Ni}$	（	（）	（	－	－	－	－	4.7
${ }^{90} \mathrm{Zr}$	\triangle	－	－	－	－	－	－	1.0
${ }^{120} \mathrm{Sn}$	\triangle	－	－	－	－	－	－	2.6
${ }^{208} \mathrm{~Pb}$	©	（0）	（ ）	©	－	－	－	5.2

○．．．measured，©．．．good statistics，$\triangle \ldots$ poor statistics，$-\ldots$ not measured

Analysis

Detailed calibrations have mostly been finished．
－Calibration of the scattering angle，solid angle． $\Delta \theta \sim 0.6^{\circ}$
－Calibration for high energy－resolution data． $\Delta \mathrm{E} \sim 20 \mathrm{keV}$
－Background subtraction works well
－Absolute cross sections and continuous angular distribution from 0 deg to large angles

Spectra

Inelastic Scattering from ${ }^{28} \mathrm{Si}$ at 0 degrees

Angular Distribution of IS and IV 1^{+}excitations

DWBA calculation
Trans．density ：A．Willis et al．，PRC 43（1991）5（by OXBASH in sd shell only） NN interaction．：Franey and Love，PRC31（1985）488．（325 MeV data） Optical potential ：K．Lin，M．Sc．thesis．，Simon Fraser U． 1986.

Analyzed by H．Matsubara

From angular distribution，isospin value is identified．

Other states identified as 1^{+}

Strength distribution

preliminary

shell model calculation：
OXBASH＋USD interaction

Total sum of the strengths preliminary

Cumulative Sum

Followings should be checked more carefully．
－ $\mathrm{B}(\sigma)$ is determined from $\mathrm{d} \sigma / \mathrm{d} \Omega(\mathrm{q}=0)$

$$
\text { Quenching Factor }=\frac{\Sigma B(\sigma)_{\text {exp }}}{\Sigma B(\sigma)_{\text {shell-model }}}
$$ relying on the eff．interaction and DWIA calculation．

－Bare g－factor is used in the S．M．calculation．

入射サイクロトロン更新WS，February 19－20， 2007 at RCNP Inelastic Scattering from ${ }^{12} \mathrm{C}$

DWBA calc．
Cohen Kurath Wave Function Franey Love Effective Interaction

DWBA calculations using Cohen Kurath W．F．and Franey－Love effective interaction 36 （parameter set at 325 MeV ，red line）well reproduce the data without any normalization．

M1 and E1 excitations in ${ }^{208} \mathrm{~Pb}$

高品質•高分解能ビームラインで展開する物理 RCNP，Osaka，28－29 March 2000

Study of M1 excitations via the ${ }^{208} \mathrm{~Pb}\left(p, p^{\prime}\right)$ reaction at 0° and very forward angles

Department of Physics，University of Tokyo
A．Tamii

Prediction of the M1 strengths in ${ }^{208} \mathrm{~Pb}$ with $1 p-1 h$ basis

$1 p-1 h$ excited states of protons $\mid \pi\left\{h_{9 / 2}-h_{11 / 2}{ }^{-1}\right\}>$ and neutrons $\mid v\left\{i_{11 / 2}-i_{13 / 2}{ }^{-1}\right\}>$ strongly couples to each other due to
－spin－orbit splittings of p and n orbits are similar
－orbital angular momentum l＇s are similar
and yield
－a lower－lying state at $\sim 5.4 \mathrm{MeV}$ with $\mathrm{B}(\mathrm{M} 1) \sim 1 \mu_{N}{ }^{2}$
－a higher－lying state at $\sim 7.5 \mathrm{MeV}$ with $\mathrm{B}(\mathrm{M} 1) \sim 50 \mu_{N}{ }^{2}$
in Tamm－Dancoff approximation．

J．D．Vergados，Phys．Lett．36B（1971） 12.
Bohr and Mottelson，Nuclear Structure vol II（1975）636．

Fragmentation of the M1 strengths in ${ }^{208} \mathrm{~Pb}$

The low－lying strength is considered to be exhausted by a state located at 5.846 MeV ．
observed by（p，p’）S．I．Hayakawa et al．，PRL49（1982）1624，（e，e’），and（d，d＇）．

The higher－lying strength is fragmented into many tiny states by mechanisms：
－core－polarization or g．s．correlation
－coupling to $2 \mathrm{p}-2 \mathrm{~h}$ states
－coupling to Δ－h states
－meson exchange current

Experimentally，only a strength of $\sim 10 \mu_{N}{ }^{2}$ has been observed（until 1988）comparing with theoretical

calc．by Lee and Pittel PRC11（1975）607． predictions of $\sim 10 \mu_{N}{ }^{2}$ ．
\rightarrow＂Missing M1 strength in ${ }^{208} \mathrm{~Pb}$＂

Prediction of the M1 strengths in ${ }^{208} \mathrm{~Pb}$

Many theoretical works have been done for reproducing the observed M1 strengths
－spreading by the coupling to $2 p-2 h$ states： 20% of reduction
－ground state correlation：
20% of reduction
－coupling to Δ－h states and MEC：
20% of reduction

If all the meachanisms additively contribute，
＂the best that be expected from theoretical predictions is $20 \mu_{N}{ }^{2 "}$
I．S．Towner，Phys．Rep 155 （1987） 263.

Search for M1 strengths by experiments

Experimentally many reactions have been used to observe the M1 strengths：
${ }^{208} \mathrm{~Pb}(\vec{\gamma}, \gamma),{ }^{208} \mathrm{~Pb}(\gamma, \vec{n}),{ }^{207} \mathrm{~Pb}(n, n),{ }^{207} \mathrm{~Pb}(n, \gamma)$,
${ }^{208} \mathrm{~Pb}\left(e, e^{\prime}\right)$ ，and ${ }^{208} \mathrm{~Pb}\left(p, p^{\prime}\right)$

In 1988，R．M．Laszewsky et al．have identified $8.8 \mu_{N}{ }^{2}$ below Sn by a ${ }^{208} \mathrm{~Pb}(\vec{\gamma}, \gamma)$ measurement． In total the higher－lying strength became $15.6 \mu_{N}{ }^{2}$
which came closer to the＂best＂（smallest） theoretical prediction of $20 \mu_{N}{ }^{2}$ ．

Still the search for M1 strengths in ${ }^{208} \mathrm{~Pb}$ is an important job to experimentally determine the M1 strengths and their E_{x} distribution．

R．M．Laszewski et al，PRL61（1988）1710

入射サイクロトロン更新WS，February 19－20， 2007 at RCNP

medium under focus mode

- vertical scatt. angle resolution
- background subtraction

Preliminary Spectra

（Erased from this PDF file）

将来計画

- AVF－FT への期待
- ビームのさらなる安定化
- （偏極ビームを含めた）High－Quality ビームの高輝度化 （当面必要なのは～5nA）
- 実験計画
- ${ }^{208} \mathrm{~Pb}$ DLL データの取得（approved）
- sd－shell のN＝Z核のデータ取得（H．Matsubara，proposal is submited）
- $\quad \gamma$－decay のコインシデンス実験（proposal in preparation）
- Zr データ（偏極移行量）の取得

ビーム起因の HPGe Trigger
0.8 kcps at 1 nA on 208 Pb ，at 560 mm from the target，threshold $\sim 500 \mathrm{keV}$

Summary

－Experimental method of high－resolution（ p, p^{\prime} ）measurements at forward angles is successfully developed．
$\Delta \mathrm{E} \sim 20 \mathrm{keV}, \Delta \theta \sim 0.6$ deg，up to ${ }^{208} \mathrm{~Pb}$
－（ p, p^{\prime} ）at forward angles is a very power probe for studying M1，E1 and other excitations．
M1 and E1 excited states can be identified from their
－angular distribution，energy dependence，and／or spin transfer．
B（ σ ）：（p，p’）
B（M1）by EM probes（e，e’）（ γ, γ^{\prime} ）
orbital part：combination

