Hypernuclear experiments at K1.1 in future

Tohoku University H. Tamura

Contents

- Gamma-ray spectroscopy of ∧ hypernuclei at K1.1
- 2. Light Σ hypernuclei by (K⁻, $\pi^{\pm,0}$) at K1.1
- 3. γ decay of Σ hypernuclei at K1.1

Coulomb-assisted hybrid states -> HR pion line (Noumi-san)

1. Gamma-ray spectroscopy of Λ hypernuclei at K1.1

Beam and Setup for γ **spectroscopy**

LOI for γ spectroscopy (2003)

Reaction / p (GeV/c) ; Beamline ; Features

(1) Complete study of <u>light (A<30)</u> hypernuclei ...,²⁰_ΛNe, ²³_ΛNa, ²⁷_ΛAl / ²⁸_ΛSi (K⁻,π⁻) p= 1.1 and 0.8; K1.1; γγ coin, angular corr., B(E2),..
 "Table of Hyper-Isotopes" ΛN interaction (ΛN–ΣN, p-wave, ...) Partly in E13 Shrinkage, collective motion, ...

(2) Systematic study of <u>medium and heavy</u> hypernuclei ${}^{89}_{\Lambda}$ Y, ${}^{139}_{\Lambda}$ La, ${}^{208}_{\Lambda}$ Pb (K⁻, π ⁻) p=0.8-1.8 ; K1.1 and K1.8 ; p-wave Λ N interaction

(3) <u>Hyperfragments</u> ${}^{8}_{\Lambda}$ Li, ${}^{8}_{\Lambda}$ Be, ${}^{9}_{\Lambda}$ B,...

K⁻-in-beam (stopped K⁻) p=0.8 ; K1.1 ; p/n-rich hypernuclei,

- (4) <u>*n*-rich and mirror</u> hypernuclei ${}^{7}_{\Lambda}$ He, ${}^{9}_{\Lambda}$ Li, ${}^{12}_{\Lambda}$ B... Shirotori's talk (K⁻, π^{0}) p= 1.1 and 0.8 ; K1.1 ; charge sym.break., shrinkage of n-halo,
- (5) <u>B(M1)</u> using Doppler shift ${}^{7}_{\Lambda}$ Li and heavier Partly in E13 (K⁻, π^{-}) p= 1.1 and (π^{+} ,K⁺) p= 1.05 ; K1.1 ; μ_{Λ} in nucleus
- (6) <u>B(M1)</u> using γ -weak coincidence (K⁻, π ⁻) p= 1.1 and 0.8 ; K1.1 ; ρ , T dependence of μ_{Λ} in nucleus

Reaction / p (GeV/c) ; Beamline ; Features

(7) *Ξ* atom X rays (K⁻, K⁺) p=1.8 GeV/c; K1.8 ; ΞN interaction

(8) AA-hypernuclei

(K⁻, K⁺) p=1.8 GeV/c; K1.8; $\Lambda\Lambda$, Ξ N- $\Lambda\Lambda$ interactions

(5),(6) B(M1) measurements

 μ_{Λ} in nucleus -> medium effect of baryons

Doppler shift attenuation method [same as B(E2), established] for light hypernuclei; Weak K⁻ or π⁺ beam usable

γ-weak coincidence method [new, only possible at J-PARC] for ¹²_ΛC and heavy hypernuclei; Intense K⁻ beam necessary

Best K⁻ beam momentum

-> Double-stage separation. K1.8BR is not good.

2. Light Σ hypernuclei by (K⁻, $\pi^{\pm,0}$) at K1.1

<u>Quark DOF really necessary</u> in BB interaction?

ΛN spin-orbit force (Λ-spin-dependent LS force ~ 0)
 -- ⁹ Be, ¹³ C γ-spectroscopy data

•	Σ		Δ	S _A	S _N	Τ (Μ	leV))
	-	ND	-0.048	-0.131	-0.264	0.018)	uclear pot.
		NF	0.072	-0.175	-0.266	0.033	G-matrix calc	
	S	NSC89	1.052	-0.173	-0.292	0.036	by Yamamoto	
		NSC97f	0.754	-0.140	-0.257	0.054		
		("Quark"		0.0	-0.4)	,	
		Stre	ength equival	wara et al.				
		Exp.	0.4	-0.01	-0.4	0.03		
						-		

Σ hypernuclei and ΣN interaction

- ${}^{4}_{\Sigma}$ He bound state -> T=1/2 attractive 4 He(K⁻, π^+) -> T=3/2 repulsive
- ⇒ Lane term $(\sigma_{\Sigma}\sigma_{N})(\tau_{\Sigma}\tau_{N})$ consistent with Nijmegen interactions No bound-state peaks in ${}^{6}{}_{\Sigma}$ Li, ${}^{7}{}_{\Sigma}$ Li, ${}^{9}{}_{\Sigma}$ Be, ${}^{12}{}_{\Sigma}$ C
 - Σ atomic data attraction at outer nuclear region (not direct information)
- ²⁸Si,..(π⁻,K⁺) spectrum -> spin-averaged pot. strongly repulsive (~ +30 MeV)
- =>Lane term $(\sigma_{\Sigma}\sigma_{N})(\tau_{\Sigma}\tau_{N})$ (by π/ρ .. exchange) consistent, but strength of each spin-isospin channel and ΣN -> ΛN not determined yet.

T=3/2,S=3/2 channel strongly repulsive? (by quark Pauli)

=> More data for light (spin-isospin unsaturated) hypernuclei

G-matrix results for various interactions

TABLE XIV. Contributions to U_{Σ} at $k_F = 1.0 \text{ fm}^{-1}$ in the cases of NSC97e, NSC97f, NSC89, NHC-F, and NHC-D. Conversion widths Γ_{Σ} are also shown. All entries are in MeV.

Model	${}^{1}S_{0}$	${}^{3}S_{1}$	Р	${}^{1}S_{0}$	${}^{3}S_{1}$	Р	Sum	Γ_{Σ}
NSC97e	5.2	-7.5	0.0	-6.1	-2.5	-0.9	-11.8	14.6
NSC97f	5.2	-7.6	0.0	-6.2	-2.2	-0.9	-11.6	15.5
NSC89	3.0	-4.2	-0.3	-5.8	3.7	0.1	-3.6	25.0
NHC-F	4.2	-10.9	-1.5	-5.3	18.6	-1.7	3.5	16.3 Bijkon Vamamoto
NHC-D	2.1	-9.6	-2.2	-5.4	9.4	-3.0	-8.7	8.7 PRC73 (2006) 044008
ESC04d fss2(quark)	6.5 6.7	-21.0 -23.9	-3.4 -5.2	-20.2 -9.2	24.0 41.2	-20.9 -1.4	-26.0 7.5	Fujiwara et al., Prog.Part.Nucl.Phys. 58 (2007) 439
]-								k _f =1.35 fm ⁻¹

Lane term $(\sigma_{\Sigma}\sigma_{N})(\tau_{\Sigma}\tau_{N})$ by π/ρ exchange quark Pauli effect

Other Σ hypernuclei?

No Σ bound states in A>4

Bart et al. PRL 83 (1999) 5238

FIG. 9. $(\pi^-, K^+)\Sigma$ formation inclusive spectra with a ²⁸Si target at $\theta_K = 6^\circ \mp 2^\circ$ for pions with $p_\pi = 1.2 \text{ GeV}/c$. These results were obtained with four choices of the strength $U_{\Sigma}^0 = -10$, 10, 30, 50 in a Woods-Saxon potential form with the geometry parameters of $r_0 =$ $1.25 \times (A - 1)^{1/3}$ fm and a = 0.65 fm. Experimental data points are taken from Refs. [22,23].

> Data: Noumi et al., PRL 87 (2002) 072301 Calc: Kohno et al., PRC 74 (2006) 064613

<u>Previous ³He(K⁻,π⁻) data at BNL E774</u>

cut.

m-left). Bottom: ³He(K^-, π^-) spectra. Inclusive data are in open circles and multiplicity-tagged data are in crosses.

Proposed ³He experiment

- ³He (K⁻, $\pi^{\pm,0}$ Λ) at threshold, p_K~0.5~0.6 GeV/c (q < 50 MeV/c)
- ${}^{3}{}_{\Sigma}$ He, ${}^{3}{}_{\Sigma}$ H, ${}^{3}{}_{\Sigma}$ n : different combination of ($T_{N\Sigma}$, $S_{N\Sigma}$) = (3/2,1), (3/2,0), (1/2,1), (3/2,0) from ${}^{4}{}_{\Sigma}$ He, ${}^{4}{}_{\Sigma}$ n
- 3-body systems can be accurately calculated

 -> direct comparison with various interactions
 (how sensitive? theoretical calculations essential)
- Apparatus: Low momentum beam line (K1.1BR)
 + beam spectrometer + SPESII and π⁰ spectrometer + Λ tagger (CDS)

Experiment

- Beam spectrometer (\(\Delta p_{FWHM}\) <1.5 MeV/c at 600 MeV/c) in place of K1.1BR B3
- 3He target
- A tagger => CDS
- π[±] spectrometer (Δp_{FWHM} <1.5 MeV/c at 500 MeV/c)
 => SPESII
- π^0 spectrometer ($\Delta p_{FWHM} \sim 3$ MeV/c at 500 MeV/c)

Yield (K⁻, π^{\pm}): N_{K-}·d σ /d Ω · $\Delta\Omega$ ·N_{target}· ϵ (Λ tag) · ϵ = 5x10⁵/spill·50x10⁻³⁰cm²/sr·0.02sr·0.09g/cm³/ 3·10cm· 6x10²³ ·0.3·0.5 => 1400 counts/100hours ->Lower beam momentum? Yield (K⁻, $\pi^{\pm 0}$): => ~100 counts/100hours

FIG. 3. Contributions to the ${}^{4}\text{He}(K^{-}, \pi^{-})$ spectrum near the Σ threshold. The solid, long-dashed, and dashed curves are for the total π^{-} , $\pi^{-} + {}^{3}\text{He} + \Lambda$, and $\pi^{-} + X^{++} + \Lambda$ final states, respectively. The dotted curve denotes the contribution of $J^{\pi} = 0^{+}$ in the $\pi^{-} + X^{++} + \Lambda$ final state.

calc: Harada, PRL 81(1998) 5287

3. γ decay of Σ hypernuclei at K1.1

Spin-flip M1 transitions

 $\Gamma \propto B(M1) \propto |\langle \downarrow | \mu | \uparrow \rangle |^2$ is sensitive to w.f.

Spin-flip of s quark – small medium effect ?

Spin-flip of u/d quarks – large medium effect ?

How large is the effect?

- Shift of constituent quark mass in a nucleus $\Delta m_{u,d} \sim -20\%$, $\Delta m_s/m_s \sim -4\%$
- -> $\Delta \mu (\Sigma) \sim 20\%$, $\Delta \mu (\Lambda) \sim 4\%$ $\Delta B(M1)$ for $\Sigma \sim +40\%$, $\Delta B(M1)$ for $\Lambda \sim +8\%$

Quark Cluster Model Takeuchi et al., N.P. A481(1988) 639

$$\delta\mu\mu\mu$$
 : ⁴_ΛHe(1⁺) -1% ~ -2%, larger by Σ mixing
⁴_Σ+Li(1⁺) -40% ~ -100%
b = 0.6 fm -> 0.8 fm, μ becomes twice large.

Measurement of $\Gamma(\Sigma^0 \rightarrow \Lambda \gamma)$ in a nucleus

 Σ in nucleus = Σ hypernuclear bound states -> ${}^{4}_{\Sigma}$ He

Free Σ⁰ -> Λγ 100%, Eγ = 74 MeV $\Gamma_{\text{free } \Sigma -> \Lambda \gamma} = 1 / 7.4 \times 10^{-20} \text{ sec}^{-1} \sim 9 \times 10^{-3} \text{ MeV}$ $\Gamma_{\Sigma N -> \Lambda N} \sim 10 \text{ MeV for } {}^{4}_{\Sigma} \text{He}$ $=> BR(\Sigma^{0} -> \Lambda \gamma \text{ in nucleus}) \sim \Gamma_{\Sigma -> \Lambda \gamma} / \Gamma_{\Sigma N -> \Lambda N} \sim 0.001$

(K⁻, π ⁻) reaction at 600 MeV/c using K1.1BR d σ /d Ω (⁴_{Σ}He) ~ 100 μ b/sr (Nagae et al.)

Yield: N_{K-}·dσ/dΩ·ΔΩ·BR·N_{target}·BR(Λ->nπ⁰)·ε = 5x10⁵/spill·100x10⁻³⁰·0.02·0.001·0.12g/cm³/ 4·20cm·6x10²³· 0.3·0.5

=> 56 counts/1000hour

Background: QF Σ^0 escape, $\Sigma^0 \rightarrow \Lambda \gamma$ (-B_{Σ}>0 only) $\pi^0 \rightarrow \gamma \gamma$ from $\Lambda \rightarrow n \pi^0$ (E $\gamma \sim 50 \sim 100$ MeV) => Tag <u>3 energetic (> 50 MeV) γ rays</u> => cover the target region with a calorimeter

Theoretical calculation necessary – how large change is expected?

FIG. 3. Contributions to the ${}^{4}\text{He}(K^{-}, \pi^{-})$ spectrum near the Σ threshold. The solid, long-dashed, and dashed curves are for the total π^{-} , $\pi^{-} + {}^{3}\text{He} + \Lambda$, and $\pi^{-} + X^{++} + \Lambda$ final states, respectively. The dotted curve denotes the contribution of $J^{\pi} = 0^{+}$ in the $\pi^{-} + X^{++} + \Lambda$ final state.

Harada, PRL 81(1998) 5287

<u>Summary</u>

γ-ray spectroscopy of Λ hypernuclei at K1.1

- Various experiments using SKS + Hyperball-J
- Σ hypernuclei at K1.1BR
 - ³He(K-, π) for Σ N spin-isospin dependence
 - γ decay of Σ hypernuclear bound states
- New apparatus to be build
 2nd SKS (or "SKS2" at K1.8)
 Beam spectrometer for K1.1BR
 π⁰ spectrometer
 Calorimeter (crystal barrel)