ミュオン横偏極

- P_T is T-odd and spurious effects from final state interaction are small. Non-zero P_T is a signature of T violation.
- Standard Model contribution to P_T : $P_T(SM) < 10^{-7}$
- Spurious effects from final state interactions : $P_T(FSI) < 10^{-5}$
- There are theoretical models which allow sizeable P_T without conflicting with other experimental constraints.

KEK-PS E246 experiment

 $P_T = -0.0017 \pm 0.0023(stat) \pm 0.0011(syst)$ (|P_T| < 0.0050 : 90% C.L.) Im \xi = -0.0053 \pm 0.0071(stat) \pm 0.0036(syst) (|Im \xi| <0.016 : 90% C.L.)

1

E06 (TREK) 実験

Stopped *K*⁺ decay
SC Toroidal spectrometer

• Measurement of e^+ emission <u>*cw/ccw*</u> asymmetry when π^0 in <u>*fwd/bwd*</u> directions

E06 (TREK)目標感度

- 10-4の感度で幾つかの理論モデルが射程内
- ϵ'/ϵ が New Physics とすると、 $K^+ \mathcal{O}P_T \sim 10^{-4}$ (I.Bigi)

TREK実験の現状とスケジュール

TREK collaboration 5カ国(カナダ、米国、ロシア ベトナム、日本)の13大学/研究 所

<=== 2007年2月のKEKミーティング

- 2006年夏にStage-1 Approval
- 2006~2007 測定器要素のR&D
- 2007年6~7月; FIFC審査と第3回PACへの報告
 測定器のアプグレード方針、系統誤差の評価 etc が認められる。
- Stage-2を要求中:ビームラインが一つのネック
- 2011~2012の実験実施を目標

J-PARCでの理想的静止K⁺用ビーム

K1.1-BR レイアウト

7

Doornbos氏の設計

● K1.8-BR の考え方と全く同じ

- A branch of K1.1
- Common use of the upstream part up to MS1
- Macroscopic time sharing with K1.1
- Effective use of IFY
- Moderate K/ π ratio with a single-stage ESS
- 2005年当時のK1.1光学設計に基づいてK1.1BRの 比較的詳細な光学設計 (2007年にビーム光学の修正があったが基本的な ところは変更がない。)

K1.1 new beam optics

Due to the conflict between K1.8B1 and K1.1B1
 Distance to B1 from T1= 2.0 m (1.2 m before)

• New optics calculation done

 $\Omega(K1.1-BR) = 6.0 \text{ msr}%(\Delta p/p)$ $\Omega(K1.1-BR) = 4.5 \text{ msr}%(\Delta p/p)$ K1.1のアクセプタンスが小さくなったのは残念であった。

Replacement of B3

K1.1-BR Design principle

Effective use of wedge focus to make HFOC
Suppression of slit-scattered pions at HFOC
Suppression of muons also at HFOC
以上K1.8BRと異なる部分

• Cloud pion source definition by IFY

K1.1-BR Beam envelop @ 0.8 GeV/c *x*'=35 mr y'=9 mrx = 3.5 mmy = 2.0 mm $\Delta p/p = 0, \pm 3\%$ Length = 20.3 mAcc = $4.5 \text{ msr } \% \Delta p/p$

Momentum dispersion

```
\begin{aligned} &\mathsf{R}_{16}(\mathrm{FF})=0\\ &\mathsf{R}_{26}(\mathrm{FF})\neq 0 \end{aligned}
```


IFY profile

ZGOUBI calculation

Source size $\Delta x = 2 \text{ mm}$ $\Delta y = 2 \text{ mm}$

ZGOUBI:

- Q fringing field
- Up to 5th order

MS1 profile

DCS = 550 kV/10 cmPion kick = 2.2 mr

ZGOUBI calculation

HFOC profile

ZGOUBI calculation

Pions = direct pions from the target

Final focus

ZGOUBI calculation

 $R_{16} = 0$

- *cf.* $R_{16} \neq 0$ @ K5
 - → source of systematic errors

 $R_{26} \neq 0$

- less problematic
- longer target

Pion contamination

Three sources:

- 1. Higher order aberration simulation by ZGOUBI
- 2. Slit scattering
- 3. Cloud pions from *Ks* ($c\tau$ =2.7 cm) simulation by REVMOC

Aberration:

$$y = \mathbf{R}_{33}y_0 + \mathbf{R}_{34} \phi + \mathbf{A}_1\phi\theta + \mathbf{A}_2\phi\theta^2 + \mathbf{B}_1\phi\delta + \mathbf{B}_2\phi\delta^2 + \mathbf{P}_1\phi\delta + \mathbf{B}_2\phi\delta^2 + \mathbf{P}_1\phi\delta^2 + \mathbf{P}_1\phi\delta + \mathbf$$

A₁, B₁ = 0 by adjusting the sextupoles S1 and S2 A₂, B₂ were minimized by optimizing the octupole O1

Rejection of slit-scattered pions

x-profile at HFOC

- Slit scattering simulation with REVMOC from IFY and MS1
- with 30 cm thickness tapered (20 mr at both ends)

HFOC is effective !

Rejection of cloud pions

Accepted *y* region at the production target

Pion source of $x = \pm 2 \text{ cm}$ $y = \pm 2 \text{ cm}$ was assumed. (c.f. $c\tau = 2.7 \text{ cm}$)

IFY = 5 mmMS1 = 4 mmHFOC = 1.6 cm

HFOC is effective !

Kaon yield and π/K ratio

Table 3: Kaon acceptance and pion contamination as function of slits for a gaussian vertical source with σ =1.3 mm. All widths are full width.

MS1 (mm)	m HFOC (cm)	N(kaons)	N(pions)	pi/K	acceptance (msr.percent)
5	open	$52,\!348$	40	0.46	4.7
5	1.2	$46,\!107$	26	0.33	4.1
4.5	open	$51,\!263$	24	0.28	4.6
4.5	1.4	46,862	19	0.24	4.2
4	open	49,631	15	0.18	4.5
4	1.2	43,688	8	0.11	3.9

Scattered pions

Table 8: Contamination due to scattering as function of slit apertures.

IFY (mm)	MS1 (mm)	HFOC (cm)	Y at HFOC (cm)	N(K))	N(PI)	Accep tance	Pi/K
open	4	open	open	86536	178	5.2	1.23
6	4	open	open	80866	262	4.9	1.94
6	4	1.6	open	79630	38	4.8	0.29
6	4	1.2	open	76407	26	4.6	0.20
6	4	1.2	+5,-15	74342	9	4.5	0.07
open	5	open	open	91557	316	5.5	2.07
6	5	open	open	85043	451	5.1	3.18
6	5	1.6	open	83978	56	5.0	0.40
6	5	1.2	open	80034	38	4.8	0.28
6	5	1.2	+5,-15	77557	17	4.7	0.13

22

Cloud pion contamination

Table 4: Cloud pions as function of slit apertures

MS1 (mm)	IFY (mm)	N(pions)	
5 5	open 6	14,994 902	
4	open	11,563	Pi/K~5
4	6	364	Pi/K~0.16

Muon contamination

Table 7: Muon contamination as function of slit apertures.

IFY (mm)	${ m MS1} \ ({ m mm})$	m HFOC (cm)	N(pions)	K/Mu
open	5	open	1970	2.33
open	5	1.2	684	0.81
6	5	open	695	0.82
6	5	1.2	190	0.22
open	4	open	1477	1.75
open	4	1.2	588	0.70
6	4	open	544	0.64
6	4	1.2	145	0.17

24

Summary of the K1.1BR beam

• Acc =
$$4.5 \text{ msr } \% \Delta p/p$$

c.f. Acc (K1.1) ~ 2 msr % $\Delta p/p$ Acc (LESB3) ~ 50 msr % $\Delta p/p$

•
$$I_{K^+} \sim 2.1 \times 10^{6/s}$$

• $\pi^+(\mu^+)/K^+ \sim 0.6$ assuming $\sigma_{\pi}/\sigma_K = 600$

• Beam spot : $d_x \sim d_y \sim 1 \text{ cm} \ll @\text{K5}$ (old calculation)

n-value in B1

最近の検討で、第一エレメントをCombined-function magnet とすると アクセプタンスが大幅に改善されることが判明。

- BY(x,0)=BY(0,0)*(1-*n*x/rho)
- TRANSPORT input

 <u>4.000</u> 'B1 ' 0.80000 10.47709 -6.74614;
 Q2 is turned off

アクセプタンス Ω=8.0 msr%(Δp/p) 1.75 倍の増加!

チェックすべき課題: 1)K1.1ビーム光学が可能であるか? 2)構造的、技術的問題 この部分

K1.1-BR 今後の進め方

FIFCレビューア Phil Pile氏の助言の検討

- 2~3のスリットの追加の可能性
- 更なるK/π比改善の努力

● 検討結果を"K0.8 beam design progress report"として次回のPACへ報告する。

●素核研/J-PARCにはビームライン設置の計画 (年次計画、予算計画)をPACに示すことをお願い する。

第3回PACの助言

• <u>To: E06</u>

The PAC is also concerned that there are several conflicts and interferences between the K0 beamline and K1.1-BR beamline designs, as mentioned in the FIFC report. The discussion on the stage-2 recommendation will be made after we hear from the IPNS/J-PARC management on the realistic plan of the beamline.

• <u>To : IPNS/J-PARC</u>

The PAC considers that it is important for the IPNS/J-PARC management to develop a realistic plan for the completion of the beam lines.

まとめ

E06 (TREK) 実験のためのK1.1-BRの詳細な検討が進んでいる。K1.1-BRとして理想的な光学はほぼ固まっている。

ビームラインの早期の実現のためには、K1.1ビーム
 も含めた全体の計画が1日も早くできている必要。
 K1.1の実験提案が早く出てくることを望みたい。

PACからの宿題であるK0とK1.1干渉問題の解決と、K1.1
 先頭部の設置時期の計画策定は、ハドロンビームライン
 グループに依存している。宜しくお願いします。