∧ハイパー核の弱崩壊実験

S. Ajimura (RCNP)

- Nonmesonic weak decay of hypernuclei
- E22 experiment (${}^{4}_{\Lambda}$ He)
- Future experiment $({}^{4}_{\Lambda}H)$

Weak decays in Λ -Hypernuclei

Mesonic weak decay (MWD) similar with free Λ decay spin/isospin structure well known

I=0 or 1 Non-Mesonic weak decay (NMWD) new decay modes $\Lambda p \rightarrow np, \Lambda n \rightarrow nn$ spin/isospin structure: unknown ΛN weak interaction

Status of NMWD studies

- Old puzzle solved recently
 - np-ratio $(\Gamma_{\Lambda n \to nn} / \Gamma_{\Lambda p \to pn} \equiv \Gamma_n / \Gamma_p)$ inconsistent $\Gamma_n / \Gamma_p \ge 1 (\text{Exp.}) \iff \Gamma_n / \Gamma_p \approx 0 \text{ (Theory)}$
 - Experimental and theoretical improvements

$$\Gamma_n / \Gamma_p \approx 0.5$$
 (Exp. and Theory)

 – (Exp.) Back-to-back coincidence for final two nucleons (E462/508)

A new puzzle arises									
_	– Decay asymmetry inconsistent								
α_{l}^{T}	NM	$\approx 0 (Ex)$	p.) $\Leftrightarrow \alpha$	$p^{NM} \approx -p^{NM}$	-0.7 (T	Theory)			
n									
Asymmetry written by amplitudes ${}^{1}S_{0} \times {}^{3}S_{1} \longrightarrow {}^{3}S_{1} \times {}^{3}S_{1}$									
$\alpha_{n}^{NM} = \frac{2\sqrt{3}Re[-ae^{*} + b(c - \sqrt{2}d)^{*}/\sqrt{3} - f(\sqrt{2}c + d)^{*}]}{(\sqrt{2}c + d)^{*}}$									
1	$ \{a^2 + b^2 + 3(c^2 + d^2 + e^2 + f^2)\} $ Large contribution ?								
in	itial	final	amplitude	isospin	parity	-			
1	S ₀	¹ S ₀	а	1	no	$\frac{1}{2} \log \left(I \right)$			
		³ P ₀	b	1	yes	$S_0(I = 1)$			
3	³ S ₁	¹ S ₁	С	0	no				
		³ D ₁	d	0	no	$S_1(I=0)$			
		¹ P ₁	е	0	yes				
		³ P ₁	f	1	yes	$-S_1(I=1)$			
			assi	uming init	ial S state	I X Z			

• NMWD of 4-, 5-body hypernuclei

– allowed initial ΛN states

	parity	isospin	amplitude	final	initial	
	no	1	а	¹ S ₀	¹ S ₀	
$S_0(I = 1)$	yes	1	b	³ P ₀		
)	no	0	С	¹ S ₁	³ S ₁	
$\sum_{i=1}^{3} S_{1}(I=0)$	no	0	d	³ D ₁		
	yes	0	е	¹ P ₁		
$- {}^{3}S_{1}(I=1)$	yes	1	f	³ P ₁		
assuming initial S state						

Status of amplitude determination

Current status

constraint from ${}^{5}_{\Lambda}$ He data other constraints are loose

Our prospects

new constraint from ${}^{4}_{\Lambda}$ He np-ratio better than 15% error

Production of ${}^{4}_{\Lambda}$ He

Energy resolution

- K1.8 bemline + SKS \rightarrow excellent resolution

- Liquid ⁴He 2 g/cm² $\rightarrow \Delta Ex \sim 2 \text{ MeV}$
- $BE({}^{4}_{\Lambda}He) = 2.42 \pm 0.04 \text{ MeV}$
- Separation from QF Λ production essential

Decay arm system

- Large acceptance and high efficiency for NN

Yield estimation

Parameters	Values	
π^+ beam momentum	1.1 GeV/c	
π^+ beam intensity	1×10^7 /spill	high beam intensity
PS acceleration cycle	3.4 sec/spill	3
⁴ He target thickness	$2 g/cm^2$	
Reaction cross section	$10 \ \mu \mathrm{b/sr}$	
Spectrometer solid angle	0.1 sr 🗲	— large acceptance
Spectrometer efficiency	0.5	9
Analysis efficiency	0.5	
Decay counter acceptance for proton	0.25	
Decay counter acceptance for neutron	0.4	large acceptance
Efficiency for decay protons	0.8	and high efficiency
Efficiency for decay neutrons	0.3	and high officiency
Branching ratio of $\Lambda n \rightarrow nn$ process	0.01	
Branching ratio of $\Lambda p \rightarrow np$ process	0.1^{*}	

- 19,000 ${}^4_\Lambda\text{He}/\text{day}$ \rightarrow 500,000 ${}^4_\Lambda\text{He}$ in 4 weeks
- 1,300 $\Lambda p \rightarrow np$ and 75 $\Lambda n \rightarrow nn$ in 4 weeks

in case of 1% BR

Background estimation

- Background sources
 - QF Λ -production ($\Lambda \rightarrow p + \pi^{-}, \pi^{-} + A \rightarrow nnX$)
 - cut in Ex spectrum
 - Mesonic weak decay of hypernuclei
 - ${}^{4}_{\Lambda}\text{He} \rightarrow {}^{3}\text{He} + p + \pi^{-}, \pi^{-} + A \rightarrow nnX$
 - $\Gamma_{\pi^-} \approx 0.3 \ \Gamma \iff \Gamma_n \approx 0.01 \ \Gamma$
- Reduction of background
 - veto: no π track in CDC
 - less material at target
 - LHe target \leq 2 g/cm²
 - range(π -) \leq 5 g/cm²

Background MC simulation

Simulation of worst case

– 1/5 of π – stop in material around target

 $1/5 \Gamma \pi$ - ~ 0.06 \Leftrightarrow Γn ~ 0.01

- GEANT4 base simulation

Nonmesonic decay of A=4 hypernuclei

hypernucleus	An nn	Лр пр
$^{4}{}_{\Lambda}H$	${}^{1}S_{0}, {}^{3}S_{1}$	${}^{1}S_{0}$
⁴ _A He	${}^{1}S_{0}$	${}^{1}S_{0}, {}^{3}S_{1}$
⁵ _A He	${}^{1}S_{0}, {}^{3}S_{1}$	${}^{1}S_{0}, {}^{3}S_{1}$

Allowed initial states for A=4, 5 hypernuclei

• $\Gamma p({}^{4}_{\Lambda}H)$, $\Gamma n({}^{4}_{\Lambda}He)$

we can measure ${}^{1}S_{0}$ amplitudes directly.

• If $\Delta I=1/2$ rule holds, $\Gamma n({}^{4}_{\Lambda}He)/\Gamma p({}^{4}_{\Lambda}H)=2$.

we can check the validity of the $\Delta I=1/2$ rule in B-B weak interaction.

Existing experimental results

 $\Gamma n({}^{4}_{\Lambda}He) /\Gamma_{\Lambda}=0.01^{+0.04} /_{-0.01} \text{ (KEK), } 0.04 \pm 0.02 \text{(BNL) NP A639(1998)261c}$ $\Gamma p({}^{4}_{\Lambda}He) /\Gamma_{\Lambda}=0.16 \pm 0.02 \text{(KEK), } 0.16 \pm 0.02 \text{(BNL) NP A639(1998)251c}$

(π^{-}, K^{0}) reaction

DC

<u>background</u>

Multi-pion production in the target or other material around target should be most serious background.

by measuring K⁰ decay point.

Beam Momentum

At standard momentum for (π ,K) reaction, 1050 MeV/c, $\beta\gamma c\tau$ for kaon is 3.9cm.

$$\beta\gamma c\tau = 9.7 \text{ cm } @ P_{\kappa} = 1.53 \text{ GeV/c}$$

High Intensity and High Resolution beamline (proposed by H. Noumi: 2nd NPFC L08)

Resolution OK ? - angle/momentum of pion

E_x resolution

 $\Delta p/p = 1x10^{-5}$: $\Delta E_x = 0.013 - 0.014$ 1x10⁻⁴: 0.133 - 0.142 1x10⁻³: 1.332 - 1.417

Summary

- We propose to measure the nonmesonic weak decay of 4-body Λ hypernuclei (⁴_ΛHe/H).
 - select initial spin state $({}^{1}S_{0}/{}^{3}S_{1})$
 - check the validity of $\Delta I = 1/2$ rule in baryon weak interaction
- We are now preparing E22 exp. (⁴_ΛHe) at K1.8 beamline.
- High intensity and high resolution beamline by H. Noumi, is suitable for measurement of ${}^4_{\Lambda}$ H.