

S=-2原子核実験

T.Takahashi (KEK)

J-PARCハドロン実験施設ビームライン整備拡充に向けて

2007/11/11

Contents

- Introduction
 - Motivation to Study S=-2 System
- Experiments at Early Stage
 - Spectroscopy of Ξ-Nucleus
- Future Plans
- Summary

Motivation to Study S=–2 Systems

- New sector of Baryon-Baryon interaction
 - A little information on B-B Int.
 - ΛΛ weakly attractive
 - ΞN attractive ?
 - $\Xi N \rightarrow A\Lambda$ weak or strong
- Very dynamic system
 - > Mixing of ΞN and $\Lambda \Lambda$
- Significant step toward multi-strangeness systems
 - Core of neutron stars

S=-2 System

\odot Ξ Potential and B-B Int. Models

U_{Ξ} , Γ_{Ξ} and Partial Wave Contributions in Nuclear Matter								(MeV)	
Model	Т	¹ S ₀	³ S ₁	¹ P ₁	³ P ₀	³ P ₁	³ P ₂	U_{Ξ}	Γ_{Ξ}
NHC-D	0	-2.6	0.1	-2.1	-0.2	-0.7	-1.9		
	1	-3.2	-2.3	-3.0	-0.0	-3.1	-6.3	-25.2	0.9
Ehime	0	-0.9	-0.5	-1.0	0.3	-2.4	-0.7		
	1	-1.3	-8.6	-0.8	-0.4	-1.7	-4.2	-22.3	0.5
ESC04d*	0	6.3	-18.4	1.2	1.5	-1.3	-1.9		
	1	7.2	-1.7	-0.8	-0.5	-1.2	-2.8	-12.1	12.7

• OBE (NHC-D, Ehime)

- no t-channel meson exchange
- odd-state attraction
 - \implies strong A-dependence of V_{Ξ}
- small width

ESC04d*

- strong attraction of ${}^{3}S_{1}(T=0)$
- large width

Ξ Potential and Impact on Neutron Stars

- Strange hadrons appear in the core of neutron star...
- What kind of hadrons? / How much density?
 - depends on mass, charge, and interaction
 - > Negative baryons are favored.
- Σ⁻ was supposed to be important. However its interaction with neutron matter is found to be strongly repulsive.
- Ξ⁻ and its interaction should be important.

How to produce and study S=-2 systems

Previous Studies on Ξ -Hypernuclei and Ξ Potential (1)

Dover & Gal; Analysis of old emulsion data

 $U_{\pm} = -24 \pm 4 \ MeV$ Ann. of Phys. 146 (1983) 309

• E-Captured events at KEK E176

Prog. Thoer. Phys. 89 (1993) 493

 $\Xi^{-} + {}^{12}C \rightarrow {}^{4}_{\Lambda}H + {}^{9}_{\Lambda}Be (0.54 \pm 0.20 MeV)$ $\Xi^{-} + {}^{14}N \rightarrow {}^{4}_{\Lambda}H + {}^{11}_{\Lambda}B (0.35 \pm 0.20 MeV)$ $\Xi^{-} + {}^{16}O \rightarrow {}^{4}_{\Lambda}H + {}^{13}_{\Lambda}C (6.62 {}^{+0.22}_{-0.23} MeV)$ Phys. Lett. B355 (1995) 45 $\Xi^{-}+{}^{12}C \rightarrow {}^{4}_{\Lambda}H + {}^{9}_{\Lambda}Be \quad (3.70{}^{+0.18}_{-0.19} \text{ MeV})$ $\longrightarrow {}^{4}_{\Lambda}H + {}^{9}_{\Lambda}Be^{*} (0.62{}^{+0.18}_{-0.19} \text{ MeV})$ $\rightarrow {}^{4}_{\Lambda}H^{*} + {}^{9}_{\Lambda}Be (2.66{}^{+0.18}_{-0.19} \text{ MeV})$

• Analysis by Yamamoto $U_{\Xi} = -(16 - 17) \text{ MeV}$ Few-Body Syst. Suppl. 9 (1995) 145

E05 (K⁻,K⁺) Spectroscopy on ¹²C $- \frac{12}{\Xi}Be -$

- (K⁻,K⁺) reaction at p=1.8GeV/c
 - Missing mass resolution ~3 MeV/c²(FWHM)
- K1.8 beamline@J-PARC
 - > High intensity 1.4 x 10⁶ /spill @ Phase1
 - > High purity $K^{-}/\pi^{-} = 6.9$
 - > H.R. spectrometer $\Delta p/p \sim 3.3 \times 10^{-4}$ (FWHM)
- SksPlus spectrometer
 - > $\Delta p/p = 1.2 \times 10^{-3}$ (FWHM)
 - ➤ ~30msr

K1.8 beamline

Primary proton beam	50 GeV-15μA	30 GeV-9μA			
Length (m)	45.853				
Acceptance (msr.%)	1.4				
K ⁻ (π) intensity (ppp) @1.8 GeV/c	6.6E+06	1.4E+06			
@1.5 GeV/c	2.7E+06	0.54E+06			
@1.1 GeV/c	0.38E+06	0.08E+06			
Electrostatic separator	750kV/10cm, 6m × 2				
Single rate @ MS2 @ 1.8 GeV/c	>33E+06	>8E+06			
K⁻/(π⁻+μ⁻) @ FF @ 1.8 GeV/c	4	3.5			
X/Y(rms) size @ FF (mm)	19.8/3.2				

Singles-rate of B.S. assumed 0.6s ext. 13.3MHz@upstream 3.0MHz@downstream

SksPlus spectrometer

2007/11/11

E05 Expected Yield

- 60nb/sr
- 4.0x10¹⁰ K⁻/day
 - > 1.4x10⁶ K⁻/spill
 - 0.7 sec. FT (2.3MHz@FF)
 - 95% running efficiency
- 3 cm (5.4 g/cm²) target
- 30 msr
- fdecay ~0.5
- fana ~0.7
- 1month data-taking

6.8 evts/day48 evts/week~200 evts/month

P.Khaustov et al, PRC61(2000)0546

After E05 ...

- No narrow peak
 - No bound state
 - Broad width
 - Direct production of ΛΛnucleus
 - ($\Lambda\Lambda$ spectroscopy)

Other than nuclear spectroscopy is necessary to study ΞN int.

- Quasi-free shape analysis
- Atomic X-ray measurement

- Obs. bound state(s)
 - Heavier targets for mass dependence
 - ²⁷AI, ⁴⁰Ca, ⁸⁹Y, ...
 - Coulomb-assisted states
 - Narrow width for high-/
 - ³He(K⁻,K⁺) reaction
 - p-n-Ξ⁻(n-n-Ξ⁰) state
 - Spin-isospin structure
 - (K⁻,K⁰) reaction
 - Isospin ∆I=0 excitation

Ξ Single-Particle Energy

J-PARCハドロン実験施設ビームライン整備拡充に向けて

²⁰⁸Pb(K⁻,K⁺) Spectrum

Woods-Saxon potential

S.Tadokoro, H.KObayashi and Y.Akaishi, Phys. Rev. C 51 (1995) 2656.

Centrifugal barrier Low nuclear density region

Suppression of $\Xi N \rightarrow \Lambda \Lambda$ Conversion

Very narrow peaks with a large orbital angular momentum.

Yield for heavier targets

- Cross section $? \propto A^{1/3}$ (best case?)
- Target (thickness) ∝1/A
- Yield for the same intensity and time
 Y∝A^{-2/3}
- $Y(^{89}Y) = (12/89)^{-2/3} Y(^{12}C) = 0.26Y(^{12}C)$
- $Y(^{208}Pb)=(12/208)^{-2/3}Y(^{12}C)=0.15Y(^{12}C)$
- Higher intensity & long beam time are necessary.

If 50GeV-15µA is achieved ...

- 6.6x10⁶/spill with 0.7s FT
 - > 14MHz singles rate @ downstream
 - 55MHz singles rate @ upstream
 - > 1.5x10¹¹ K⁻ /day
- Why N.G.?
 - Detector rate ability
 - Accidental backgrounds
- 1.7s FT

2007/11/11

- > 20 MHz singles rate @ upstream
- > 1.2x10¹¹ K⁻/day
- Give up point-to-point condition of B.S.
 - Larger beam size at upstream
 - Ioose resolution. How much?

other than wire chamber fast device / analysis

x 3

N.G.? x 3.75

O.K.

 (K^{-}, K^{0}) reaction

- (K⁻,K⁺) can excite only ∆I=1, but (K⁻,K⁰) can excite ∆I=0.
 - Isospin dependence
- K⁰ is measured by $K_S \rightarrow \pi^+ \pi^-$.
 - > Opening angle η~35° @1.3GeV/c
 - How to distinguish K0 and K0bar
 - Tagged with weak decay
 - Resolution
 - ~10MeV is OK, but a few MeV is ?

Summary

- Physics of S=-2
 - Baryon-baryon interaction
 - High density matter
- Experiments at early stage
 - Spectroscopy of Ξ-nucleus
 - Emulsion exp.
 - ➤ X-rays of Ξ-atomic state
- Future
 - Spectroscopy for heavy targets
 - ► (K⁻,K⁰) reaction
 - High intensity beam & handling technology

	NHC-D			Ehime			ESC04d*			WS
Target	Е	Γ	<u>r</u>	Е	Γ	<u>r</u>	Е	Γ	<u>r</u>	Е
	[MeV]	[MeV]	[fm]	[MeV]	[MeV]	[fm]	[MeV]	[MeV]	[fm]	[MeV]
¹² C										
S	-4.4	0.5	3.2	-4.5	0.3	3.1	-4.6	4.6	3.3	
w/o Coul.	-1.9	0.5	3.7	-1.9	0.2	3.7	-2.1	3.9	3.7	-2.2
²⁷ AI										
S	-14.9	0.7	2.0	-13.4	0.2	2.3	-10.1	5.7	3.0	
w/o Coul.	-8.4	0.7	2.2	-7.3	0.2	2.6	-4.7	4.7	3.4	-5.1
р	-7.1	0.4	3.4	-5.9	0.2	3.6	-5.2	2.8	4.1	
w/o Coul.	-2.0	0.3	4.0	-1.1	0.1	4.5	-0.8	1.9	5.1	
⁴⁰ Ca										
S	-19.7	0.6	2.2	-18.7	0.2	2.4	-14.1	5.9	3.0	
w/o Coul.	-10.8	0.6	2.4	-9.9	0.2	2.6	-6.2	4.9	3.4	-6.5
р	-13.7	0.5	3.0	-11.5	0.2	3.3	-9.3	3.3	3.9	
w/o Coul.	-5.7	0.4	3.3	-3.9	0.2	3.7	-2.4	2.5	4.5	-1.2
⁸⁹ Y										
S	-31.4	0.6	2.3	-29.8	0.2	2.5	-22.4	6.5	3.0	
w/o Coul.	-16.4	0.6	2.5	-15.0	0.2	2.8	-8.5	5.2	3.7	-9.0
р	-26.2	0.5	3.0	-23.6	0.2	3.3	-17.8	3.9	4.0	
w/o Coul.	-12.0	0.4	3.2	-9.8	0.2	3.6	-5.3	2.8	4.6	-4.6
d	-20.6	0.4	3.5	-17.3	0.2	3.9	-13.3	2.4	4.7	
w/o Coul.	-7.3	0.3	3.9	-4.6	0.1	4.4	-2.0	1.7	5.5	-0.2
f	-14.8	0.3	4.1	-11.0	0.1	4.6	-8.7	1.6	5.4	

E07 Systematic Study of Double Strangeness Systems with an Emulsion-counter Hybrid Method

	# of absorbed Ξ^-	# of $\Lambda\Lambda$ - hypernuclei	# of twin hypernuclei
1965	4	1	
D. Davis	(expected)		
1987-1997	80	1	2
(KEK-E176)			
1998-present	~800	7 (1)	3
(KEK-E373)			
J-PARC E07	~10000	~100	20-30?

• Double Λ Hypernuclei

- > expected ~100 events
- » extend known species
 - species dependence of $\Delta B_{\Lambda\Lambda}$
 - decay form

H-dibaryon

- Ξ-Nucleus Interaction
 - twin hypernuclei
 - X-ray from atomic states
- Unknown Phenomena

(C) **E03** Measurement of X rays from Ξ^- Atom

- Ξ^- Nuclues potential
 - Real part
 - Level energy shift
 - Imaginary part
 - Width
 - X ray yield
- Regardless of potential detail
 - attractive / repulsive
 - strong / weak absorption
 - Complementary to E05
 - E03 surface region of the potential
 - E05 inner part of the potential