GERDA PHASE II FIRST RESULTS

Francesco **SALAMIDA** INFN & University of Milano Bicocca

F. SALAMIDA - DBD16 - Osaka Nov 8th -10th 2016

Outline

- •Neutrinoless Double Beta (0vββ) decay
- GERDA
- Summary of GERDA Phase I
- GERDA Phase II
 - Phase II Upgrade
 - Configuration of GERDA Phase II
 - Performances: energy scale and resolution
 - Background
 - Liquid argon veto and pulse shape discrimination
 - Unblinding and first results
- Conclusions and Summary

Neutrinoless Double Beta (0vββ) decay

Powerful method to study the unknown neutrino properties

Observation of $0\nu\beta\beta$ decay implies:

- the neutrino v is a Majorana particle
- the lepton number can be violated (L = 2)
- it is possible to determine the v absolute mass (nuclear model dependent)

Half life of $0\nu\beta\beta$ (in case of light Majorana neutrino exchange):

$$(T_{1/2}^{0\nu})^{-1} = \underset{\text{integral}}{G_{0\nu}} |M_{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

Search for $0\nu\beta\beta$ decay

Signature is a sharp peak at Q-value of the decay (2039 keV for ⁷⁶Ge)

GERDA uses germanium detectors:

- enriched up to 86 % in the ⁷⁶Ge, $\beta\beta$ emitter (Natural I.A. 8 %)
- source = detector which implies high signal efficiency
- HPGe detectors with excellent energy resolution

The GERDA Collaboration

5

F. SALAMIDA - DBD16 - Osaka Nov 8th -10th 2016

Location: INFN, Laboratori Nazionali del Gran Sasso

Shielded by 1500 m of rock, i.e. 3500 m.w.e

F. SALAMIDA - DBD16 - Osaka Nov 8th -10th 2016

GERDA Experiment

GERDA Phase I: detectors

COAXIAL DETECTORS

- from previous experiments (HdM, IGEX)
- total mass 17.7 kg
- average FWHM of 4.3 keV at $Q\beta\beta$

Phase II BEGe DETECTORS

- better PSD and FWHM
- 5 BEGes used since July 2012
- average FWHM of 2.8 keV at Qββ

Coaxial STRING

BEGe STRING

GERDA Phase I: results

- from Nov 2011 to May 2013: exposure = 21.6 kg·yr
- BI = (11±2) 10⁻³ cts/(keV kg yr)
- Profile likelihood method: best $N_v = 0$
 - new limit on the 0vββ: T^{0v}_{1/2} > 2.1·10²⁵ yr 90% C.L
 - median sensitivity 2.4 10²⁵ yr
- previous claim [Nucl. Instr. Meth. A 481, 149 (2002)] strongly disfavoured
- upper limit on neutrino mass 0.2 0.4 eV (depending on N.M.E.)

GERDA Phase II upgrades

IMPROVEMENT W.R.T PHASE I

- 30 new BEGe detectors custom produced
- collect an exposure of ~100 kg·yr
 - more active mass (35.8 kg of ^{enr}Ge)
 - Ionger data acquisition (~ 3 4 yr)
- background reduction to ~10⁻³ cts/(keVkgyr)
 - new low mass holder, detector contacts and Front End (FE) circuits
 - pulse shape discrimination with BEGes
 - Liquid Argon (LAr) readout to veto residual external background

GERDA Phase II: Ge array

FE Circuit: new custom design, improved radio purity, 75 (35) cm above bottom (top) detectors

HV and signal contacts: bonding wire replace spring loaded contact FE cables: custom low mass + low activity (Pyralux + Cuflon)

Holders: Si plates replace most of Cu parts (improved radiopurity)Ge-string Mini Shroud (MS): nylon MS

F. SALAMIDA - DBD16 - Osaka Nov 8th -10th 2016

GERDA Phase II: Liquid Argon Veto

Integrated and commissioned since May 2015

810 scintillating fibers coupled to 90 3x3 mm SiPMs (15 readout channels)

16 photomultiplier (PMTs) 9 TOP - 7 BOTTOM

Cu cylinder covered with wavelength shifting reflector foil

GERDA Phase II: Final Configuration

- final Phase II configuration with 7 strings installed
- strings surrounded by a nylon shroud to prevent ⁴²K from reaching Ge detectors

GERDA Phase II: Final Configuration

40 detectors arranged in 7 strings:

- 30 ^{enr}Ge BEGes (20 kg)
- 7 ^{enr}Ge coaxials (15.8 kg)
- 3 natural coaxials (7.6 kg)

35.8 kg of ^{enr}Ge

First Phase II data release:

- 131 live days:
 - 25/12/2015 01/06/2016
- 82% average duty cycle
- exposure used for analysis:
 - ► 5.8 kg · yr for enriched BEGe
 - 5.0 kg \cdot yr for enriched coax
- blinding window $Q_{\beta\beta} \pm 25$ keV

F. SALAMIDA - DBD16 - Osaka Nov 8th -10th 2016

Energy Scale and Resolution

Irradiations with ²²⁸Th sources to determine the energy scale (each ~10 days)

• energy evaluated with an optimized cusp-like filter [EPJC 75 (2015) 255]

Typical Calibration Spectrum

Energy Scale and Resolution

Irradiations with ²²⁸Th sources to determine the energy scale (each ~10 days)

- energy evaluated with an optimized cusp-like filter [EPJC 75 (2015) 255]
- ≤ 1 keV shift between calibrations
- data are removed from 0vββ analysis if the energy scale is not properly evaluated

Performance on full physics data-set:

- FWHM_{coax} @ $Q_{\beta\beta}$ = 4.0 ± 0.2 keV
- FWHM BEGe @ $Q_{\beta\beta} = 3.0 \pm 0.2 \text{ keV}$

< 16 >

Background

- same isotopes as in Phase I
- Th/Ra contributions sizable with screening measurements
- α contamination larger for Coax than for BEGe, observed to decay with half-life compatible with ²¹⁰Po + slowest component

17

<

Background modeling

flat background expected in the ROI; main components:

- α from ²¹⁰Po and ²²⁶Ra
- β from ⁴²K
- γ from ²⁰⁸Tl and ²¹⁴Bi

LAr veto background suppression

Detection of LAr scintillation light allows to veto background events

- (70.4 ± 0.3) % survival fraction in the range 0.6-1.3 MeV
- ⁴⁰K/⁴²K Compton continua completely suppressed

PSD for BEGe detectors

Event-by-event selection: high A/E : events on p+ electrode (e.g. α from ²¹⁰Po) low A/E : events on n+ electrode, multiple scattering

20

PSD for **BEGe** detectors

 $Ov\beta\beta$ acceptance from ²²⁸Th calibrations (DEP): **ε**_{PSD}(**BEGe**) = (87.3 ± 0.9)%

21

double check at low energy with $2\nu\beta\beta$ events

PSD for Coaxial detectors

Multiple site event suppression as in Phase I [EPJC 73 (2013) 10]:

2 different Artificial Neural Network (ANN) method are used:

First one to discriminate MSE from SSE trained using calibration data:

- signal (SSE) DEP from ²⁰⁸TI at 1592 keV
- background (MSE) ²¹²Bi γ-line at 1620 keV

acceptance for $0\nu\beta\beta$: $\epsilon^{MSE}(coax) = (85 \pm 5)\%$

NEW ANN to suppress α **-event at p+ contact**

- test/train sample from data
- acceptance for $0\nu\beta\beta$: $\epsilon^{\alpha}(coax) = (93 \pm 1)\%$

Combined 0vββ acceptance: $ε^{PSD}(coax) = ε^{MSE} \cdot ε^{\alpha} = (79 \pm 5)\%$

GERDA Collaboration meeting Ringberg Castle **Jun 17th 2016**

LIVE UNBLINDING OF DATA IN $Q_{\beta\beta} \pm 25 \text{ keV}$

F. SALAMIDA - DBD16 - Osaka Nov 8th -10th 2016

Unblinded Spectrum : Coaxials

LEGEND

AC = Anti-Coincidence between detectors

24

- MV = Muon Veto
- LAr = Liquid Argon veto
- PSD = Pulse Shape Discrimination

Unblinded Spectrum : Coaxials

25

Unblinded Spectrum : Coaxials

< 26

Unblinded Spectrum : BEGe

Unblinded Spectrum : BEGe

28

Unblinded Spectrum : BEGe

F. SALAMIDA - DBD16 - Osaka Nov 8th -10th 2016

< 29

Background Analysis

data sets	esposure [kg•yr]	FWHM [keV]	efficiency	background [cts/(keV ⋅ kg ⋅ yr)]
Phase I - golden	17.9	4.3 (1)	0.57 (3)	$11 \pm 2 \cdot 10^{-3}$
Phase I - silver	1.3	4.3 (1)	0.57 (3)	$30 \pm 10 \cdot 10^{-3}$
Phase I - BEGe	2.4	2.7 (2)	0.66 (2)	$5^{+4}_{-3} \cdot 10^{-3}$
Phase I - extra	1.9	4.2 (2)	0.57 (3)	5 ⁺⁴ ₋₃ · 10 ⁻³
Phase IIa - coaxial	5.0	4.0 (2)	0.53 (5)	$3.5^{+2.1}_{-1.5}$ · 10 ⁻³
Phase IIa - BEGe	5.8	3.0 (2)	0.60 (2)	$0.7^{+1.1}_{-0.5} \cdot 10^{-3}$

In addition to Phase II data:

- Phase I extra (after PRL), unblinded together with Phase II data sets
- Phase I, with improved resolution [EPJC 75 (2015) 255]

the efficiency includes active volume fraction, enrichment, reconstruction of $0\nu\beta\beta$, PSD efficiency, LAr veto loss

$T^{0v}_{1/2}$ results

- Unbinned profile likelihood: flat background (1930-2190 keV) + Gaussian signal
- frequentist test-statistics and methods [EPJC 71 (2011) 1554]

Conclusions and Summary

- GERDA Phase II is running stable since December 2015
- energy resolution at $Q_{\beta\beta}$ of 3-4 keV
- the lowest background ever achieved:
 - COAX: $3.5^{+2.1}_{-1.5}$ · 10^{-3} [cts/(keV · kg · yr)]
 - BEGe: $0.7^{+1.1}_{-0.5} \cdot 10^{-3} [cts/(keV \cdot kg \cdot yr)]$
- Combined analysis Phase I + II (preliminary):
 - $T^{0v}_{1/2}$ > 5.2 10²⁵ yr (90% CL)
 - m_{ββ} < 0.15 0.33 eV (90% CL)

GOAL:

- reach 100 kg \cdot yr of exposure
- improve the limits on T^{0v}_{1/2} ~10²⁶ yr
- on m_{ββ} ~ 0.1 eV

32