The AMoRE

(Advanced Mo-based Rare process Experiment) : Search for Neutrinoless Double Beta Decay in ¹⁰⁰Mo

HyangKyu Park On the behalf of AMoRE collaboration

Center for Underground Physics, ibs (Institute for Basic Science), Korea

International Workshop on "Double Beta Decay and Underground Science" RCNP, Osaka, Nov 8 - 10, 2016

AMoRE Collaboration

-

Mole

Meeting 2014 Winter

diam'r.

8 Countries 18 Institutions ~90 Collaborators

We are accepting collaboration.

AMoRE Experimental Strategy

For sizeable background case;

For "zero" background case; No. of background events ~ O(1)

$$T_{1/2}^{0/n}(\exp) = (\log 2)N_a \frac{a}{A}e^{\frac{MT}{n_{CL}}}$$

The AMoRE is aiming to zero background.

Why we use ¹⁰⁰Mo for $0\nu\beta\beta$ search ?

- High Q-value (ββ) of 3034.40 (12) keV.
- High natural abundance of 9.7%.
- Relatively short half life (0vββ) expected from theoretical calculation.

Candidate	Q (MeV)	Abund. (%)
⁴⁸ Ca	4.271	0.19
⁷⁶ Ge	2.040	7.8
⁸² Se	2.995	8.7
¹⁰⁰ Mo	3.034	9.7
¹¹⁶ Cd	2.802	7.5
¹²⁴ Sn	2.228	5.8
¹³⁰ Te	2.533	34.1
¹³⁶ Xe	2.479	8.9
¹⁵⁰ Nd	3.367	5.6

AMoRE Parameters

- Crystals: ⁴⁰Ca¹⁰⁰MoO₄
 - ¹⁰⁰Mo enriched: > 95%
 - ⁴⁸Ca depleted: < 0.001% (N.A. of ⁴⁸Ca:0.187%)
- Low temperature detector: 10 30 mK
- Energy resolution: 5 keV @ 3MeV
- The AMoRE Plan:

	Pilot	Phase I	Phase II
Mass	1.5 kg	5 kg	200 kg
Bkg [keV ·kg· year]-1	10 ⁻²	10 ⁻³	10-4
T _{1/2} Sensitivity [years]	~10 ²⁴	2.7x10 ²⁵	1.1 x 10 ²⁷
<m<sub>ββ > Sensitivity [meV]</m<sub>	300-900	70-140	12-22
Location	Y2L (700 m depth)		New deeper Lab.
Schedule	2016~2017	2017 - 2019	2020 - 2025

Temperature dependence CaMoO₄ crystal

 CMO absolute light yield: ~4,900 ph/MeV@Room Temp. (H.J. Kim et al., IEEE TNS 57 (2010) 1475) ~30,000 ph/MeV@Low Temp.

-> Highest light yield among Mo contained crystals.

¹⁰⁰Mo enriched & ⁴⁸Ca depleted materials

¹⁰⁰Mo isotope production:

- ECP (Electrochemical plant), Russia
- ¹⁰⁰MoO₃ powder:
 - ¹⁰⁰Mo Enrichment: ~ 95%
 - Impurities:

ICP-MS at CUP	U: ~ 0.2 ppb	Th: < ~0.05 ppb
HPGe at Y2L	²²⁶ Ra: 8.3 mBq/kg	²²⁸ Ac < ~1.0 mBq/kg

⁴⁰Ca with depletion of ⁴⁸Ca isotope production:

- ELEKTROCHIMPRIBOR, Lesnoy, Russia
- ⁴⁰CaCO₃ powder:
 - ⁴⁸Ca < 0.001%
 - Impurities: U ≤ 0.1 ppb, Th ≤ 0.1 ppb, Sr = 1 ppm, Ba = 1 ppm
 ²²⁶Ra = 51 mBq/kg ²²⁸Ac(²²⁸Th) = 1 mBq/kg

Internal backgrounds of ⁴⁰Ca¹⁰⁰MoO₄ crystals

4π CsI(TI) active setup with Pb shielding at Y2L

4π gamma veto system

 $\begin{array}{l} \beta-\alpha \ \text{decay in} \ ^{238}\text{U} \ (164 \ \mu\text{s}) \\ ^{214}\text{Bi} \ (\text{Q-value}: 3.27\text{-MeV}) \rightarrow ^{214}\text{Po} \ (\text{Q-value}: 7.83\text{-MeV}) \\ \alpha-\alpha \ \text{decay in} \ ^{232}\text{Th} \ (145 \ \text{ms}) \\ ^{220}\text{Rn} \ (\text{Q-value}: 6.41\text{-MeV}) \rightarrow ^{216}\text{Po} \ (\text{Q-value}: 6.91\text{-MeV}) \\ \alpha-\alpha \ \text{decay in} \ ^{235}\text{U} \ (1.78 \ \text{ms}) \\ ^{219}\text{Rn} \ (\text{Q-value}: 6.23\text{-MeV}) \rightarrow ^{215}\text{Po} \ (\text{Q-value}: 7.38\text{-MeV}) \end{array}$

	U-238 chain (µB/kg)	U-235 chain (µB/kg)	Th-232 chain (µB/kg)
Crystals	Po-214	Po-215	Po-216
SS68	60±8	$200{\pm}14$	30 ±7
NSB29	$200{\pm}14$	700 ± 26	80±9
S35	4400±66	1200 ± 35	500 ± 22
SB28	80±9	N/A	70±8
SE1	40±12	60±8	50±15

Note: 100 µBq/kg for ²³⁸U, 50 µBq/kg for ²³²Th decay chain for AMoRE-I₈

Low temperature detectors (Calorimeters)

Choice of thermometers

- Thermistors (NTD Ge, doped Si)
- TES (Transition Edge Sensor)
- MMC (Metallic Magnetic Calorimeter)

• etc.

MMC (Metallic Magnetic Calorimeter)

Principle of operation

- 1. Energy absorption in CMO crystal.
- 2. Phonon & Photon generation.
- 3. Temperature increase (gold film).
- 4. Magnetization of MMC decrease.
- 5. SQUID pickup the change.

Advantage of MMC

- Fast rising signal : ~0.5 ms (critical to reduce 2vββ random coincidence)
- Fairly easy to attach to absorber.
- Excellent Energy resolution

MMC Phonon sensor

MMC cryogenic technique for AMoRE (I)

Phonon and Light detectors ->

Overground measurement

Phonon collector film on bottom surface

196 g ⁴⁰Ca¹⁰⁰MoO₄ (doubly enriched crystal)

Energy resolution: < 9 keV @2.6 MeV

MMC cryogenic technique for AMoRE (II)

Excellent α/e separation: ~ 15σ
 thanks to PSD and both Heat & Light measurements.

Yangyang underground laboratory (Y2L, South Korea)

Yangyang pumped storage Power Plant Minimum vertical depth : 700 m Access to the lab by car : around 2 km

Experiments

KIMS : dark matter search experiment

 AMoRE : neutrinoless double beta decay search experiment

AMoRE-Pilot detector configuration: five ⁴⁰**Ca**¹⁰⁰**MoO**₄ **crystals**

Shielding structure of AMoRE-pilot & AMoRE-I

10cm ultra-low background Pb

AMoRE-Pilot run-1 measurements

- Muon band was suppressed
- S35 phonon channel was not working
- Large vibration noise

Energy resolution in AMoRE-Pilot run-2

Pilot run-2 (SB29 not available)

FWHM energy resolution @ 2.6 MeV, at 20 mK

Crystals	Mass	AMoRE-Pilot run-1	AMoRE-Pilot run-2
SB28	0.20 kg	36.8 keV	25.0 keV
S35	0.25 kg	N/A	16.3 keV
SS68	0.35 kg	52.6 keV	22.5 keV
SE01	0.35 kg	39.7 keV	24.6 keV
SB29	0.40 kg	42.6 keV	N/A

- From run-1 to run-2, the energy resolution of phonon channels have been improved by vibration reduction
- Photon channels need further improvements

PSD in AMoRE-Pilot run-2

AMoRE-Pilot run-2: PSD as a function of temperature

Vibration from the pulse tube refrigerator (PTR)

Comparison of vibration level between PTR on and PTR off as a function of frequency

The pulse tube refrigerator of the cryostat generates mechanical vibration which turns into heat noise and disturbs the baseline

Mass-spring system

Use of four phosphorus copper springs
 Room temperature test successful

Mass Spring Damper : Recent improvement

- Higher frequency region than the natural one is isolated.
- Damping is essential to reduce resonance.

Internal background simulation for AMoRE-I

- 208 TI with α -tagging : less than 8.3x10⁻⁴ DBU.
- Random coincidence of $2\nu\beta\beta$ of ¹⁰⁰Mo: 1.2x10⁻⁴ DBU.

-> Goal of 0.002 for AMoRE-I can be achieved

Major backgrounds from radionuclides for AMoRE-II

Background source	Activity [µBq/kg]	Bg [10 ⁻⁴ cnt/keV/kg/yr]	Bg reduced by PSD [10 ⁻⁴ cnt/keV/kg/yr]
Tl-208, internal	10 (²³² Th)	0.36	
Tl-208, in Cu	16 (²³² Th)	0.22	
BiPo-214, internal	10	0.11 1)	≤ 0.01
BiPo-214, in Cu	60	1.8 ¹⁾²⁾	≤ 0.18
BiPo-212, internal	10 (²³² Th)	0.08 1)	\leq 0.01
BiPo-212, in Cu	16 (²³² Th)	0.36 ¹⁾²⁾	\leq 0.04
Y-88, internal	20	0.19	
Σ int. (w/o 2 β 2 ν)		0.74	\leq 0.57
ΣCu		2.40	≤ 0.44
Rand. coinc. from $2\beta 2\nu$ decays of ¹⁰⁰ Mo	8.7×10^3 (single evts.)	3.13)	1.2
Total		6.2	≤ 2.2

- 1) Can be reduced x0.1 by alpha/beta PSD
- 2) Can be reduced by teflon coating of Cu (to remove surface alphas)?
- 3) Can be reduced by the leading edge separation with Δt =0.5 ms

Muon background : ~1.4x10⁻⁴ counts/keV/kg/yr @Y2L

Ultra-low background crystals for AMoRE-II (I)

- MoO₃ powder purifications with sublimation method.
 - Results are monitored by ICP-MS and HPGe
 -> ²²⁶Ra can be reduced by ~100.

25

Ultra-low background crystals for AMoRE-II (II)

Crystal growing equipment:
 1 Czochalski, 2 Kyropoulous, 1 Bridgman crystal grower

Czochalski machine

The 1st CMO crystal by us.

Summary

- AMoRE-pilot with 1.5 kg CMO are running.
- AMoRE-I with ~4.5kg of crystals in next year
- We are performing on R&D programs for AMoRE-II

	Pilot	Phase I	Phase II
Detector Crystal	^{48depl} Ca ¹⁰⁰ MoO ₄	^{48depl} Ca ¹⁰⁰ MoO ₄	New crystal?
Detector Mass	1.5 kg	~5 kg	~200 kg
Background (keV /kg /year)	0.01	0.001	0.0001
Sensitivity of T _{1/2} (year)	~10 ²⁴	2.7x10 ²⁵	1.1x10 ²⁷
Sensitivity of $M_{\beta\beta}$ (meV)	< 300-900	70-140	12-22
Location	Y2L	Y2L	Handuk mine
Schedule	2016-2017	2017-2019	2020-2025

Thank you

Purification of MoO₃ **powder: Sublimation method (I)**

- MoO₃ has the transition from the solid to the gas phase around 700 °C.
 - -> Some impurities, U/Th, are still in the solid phases.

powder loading vurified powder

Event Rejection using α-tagging

- Event Rejection
 - Events are tagged for 15 mins (~5×t_{1/2}) after α event with 6.027 MeV (decay of ²¹²Bi to ²⁰⁸TI).
 - When events were tagged for 15 mins after α event with 6.027 MeV appeared, about 94.4% of β decay event from ²⁰⁸TI to ²⁰⁸Pb were rejected.
 - Similarly, tagging for 21 mins, 95.7% events were rejected.
- In our recent measurement, concentration of ²³²Th inside the CMO crystal was < 2 μBq/kg.
 - As long as concentration of ²³²Th is below
 50 µBq/kg, the background rate is lower than our goal after rejecting events.

Concentration	Corrected Rate (/keV/kg/yr)
50 μBq/kg	0.0015
10 μBq/kg	0.0003

Considerable beta decays (238U)

Considerable beta decays (²³²Th)

Considerable beta decays (²³⁵U)

Time-Amplitude analysis method

U-235 chain : Rn-219 (3.965 s) → Po-215 (1.78 ms) → Pb-211

U-238 chain : Bi-2

 $\begin{array}{l} \text{Bi-214 (20 m)} \rightarrow \text{Po-214 (164 us)} \\ \rightarrow \text{Pb-210} \end{array}$

Th-232 chain :

Rn-220 (55.6 s) → Po-216 (0.145 s) → Pb-212

History of CaMoO4

- 1) 2002 : Idea and try to grow CMO in Korea
- 2) 2003 : Collaboration with V.Kornokov.
- 3) 2004 : CMO test and Conference presentation (VIETNAM2004), Extended idea of XMoO4, cryogenic detector of CMO
- 4) 2005-2007 : Large CMO with 1st ISTC project
- 5) 2006 : Collaboration with F. Danevich group (CMO by Lviv)
- 6) 2007 : CMO R&D in cryogenic temperature started.
- 7) 2008 : 2nd ISTC project : 1kg of ^{48depl}Ca¹⁰⁰MoO4 crystal
- 8) 2009 : AMORE collaboration formed
- 9) 2010-11 : ⁴⁰Ca¹⁰⁰MoO4 internal background study
- **10) 2012 : Russian group (FOMOS) got funding for production line**
- 11) 2013 : AMoRE project funded (Under Center for Underground Physics, Institute for Basic Scinece)
- 12) 2014 : Upgrade of Y2L lab for AMoRE-pilot and AMoRE-I

⁴⁰Ca¹⁰⁰MoO₄ Crystals for AMoRE-pilot

All crystals for AMoRE-pilot are in the cryostat.