

CUPID

Marco Vignati INFN Roma on behalf of the CUPID group of interest

DBD16, 8-10 november 2016, Osaka

Cuore Upgrade with Particle ID

- $\Delta E < 10 \text{ keV}$ (Bolometers)
- CUORE infrastructure

M. Vignati

- ~1 ton isotope (¹³⁰Te, ⁸²Se, ¹⁰⁰Mo)
- Background 0.1 count / ton y

Bolometric technique

- Dielectric crystals (low heat capacitance) source embedded in the detector
- NTD-Ge thermistor: $R(T) \simeq 1 \Omega \cdot \exp\left(\frac{3 \text{ K}}{T}\right)^{\frac{1}{2}}$
- Resolution $@0\nu\beta\beta$ energy (2528 keV): $\Delta E \sim 5 \text{ keV FWHM}$
- No particle identification

CUORE at Gran Sasso lab in Italy

CUORE

988 natTeO2 bolometers

206 kg ¹³⁰Te (34% abundance in Te)

Start data taking at the end of 2016

CUORE cryostat

- More than 15 tons of lead and copper at low temperature.
- Detector calibration system: ²³²Th calibration sources deployed from 300 K to 10 mK
- Base temperature: 6.3 mK
- Cooling power: 3µW @ 10 mK

M. Vignati

CUORE sensitivity

CUPID sensitivity

CUPID arXiv:1504.03599 and 1504.03612

- Use enriched isotope to increase DBD nuclei by a factor ~3.
- Enable particle ID to suppress background.
- Select ultra-low background materials.
- Switch from Tellurium to another isotope?

isotope	$G^{0\nu}$	Q_{etaeta}	nat. abund.	$T_{1/2}^{2\nu}$
	$[10^{-14}y^{-1}]$] [keV]	[%]	$[10^{20}]$ y]
$^{-48}$ Ca	6.3	4273.7	0.187	0.44
$^{76}\mathrm{Ge}$	0.63	2039.1	7.8	15
$^{82}\mathrm{Se}$	2.7	2995.5	9.2	0.92
$^{100}\mathrm{Mo}$	4.4	3035.0	9.6	0.07
$^{116}\mathrm{Cd}$	4.6	2809	7.6	0.29
$^{130}\mathrm{Te}$	4.1	2528	34.2	9.1
$^{136}\mathrm{Xe}$	4.3	2461.9	8.9	21
$^{150}\mathrm{Nd}$	19.2	3367.3	5.6	0.08

Can make a bolometer

Background expected in CUORE

M. Vignati

α background

CUORE-0, the test of a single CUORE tower, showed that most of the background in CUORE will be dominated by degraded α particles from natural radioactivity.

Light readout in bolometers

 β/γ particles emit different amount of light than α s.

Light can be produced by scintillation or by Cherenkov effect.

Option: scintillating crystals

Zn⁸²Se

	Zn ⁸² Se	
Q-Value [keV]	2998	
Isotopic abundance [%]	9.2	
T ^{2v} [years]	9 x 10 ¹⁹	
∆E [keV FWHM]	10-30 (430 g bolometer)	
Pros	Q-value R&D concluded	
Cons	∆E ²¹⁴ Bi at 3000 keV	

Light detector: Germanium disk operated as bolometer Heat detector: ZnSe bolometer

Zn⁸²Se crystal test

- Preliminary test with 3 Zn⁸²Se
- Smeared α source for discrimination power (DP)
- Operation in Hall C LNGS cryostat: working temperature not optimal ~20 mK
 - energy resolution spoiled ~30 keV
 - but excellent α background rejection

CUPID-0: Zn⁸²Se pilot experiment

- 24 Zn⁸²Se (~95% enr.) + 2 naturals ZnSe
 - 82Se mass: ~5.2 kg (3.9•10²⁵ atoms)
- OFHC Cu frame + TECM cleaning
- PTFE stands + standard CUORE cleaning
- 3M ESR reflective foil
- Installed last month at Gran Sasso lab
- Data taking by the end 2016.
- Expected bkg. < 1.5 10⁻³ counts/keV/kg/y
- Sensitivity in 1 year: 9 x 10²⁴ y

$Li_2{}^{100}MoO_4$

	Zn ⁸² Se	Li ₂ ¹⁰⁰ MoO ₄	
Q-Value [keV]	2998	3034	
Isotopic abundance [%]	9.2	9.7	
T ^{2v} [years]	9 x 10 ¹⁹	7 x 10 ¹⁸	
ΔE [keV FWHM]	10-30 (430 g bolometer)	5-8 (210 g)	
Pros	Q-value R&D concluded	Q-value PID w/o light detector	
Cons	ΔΕ ²¹⁴ Bi at 3000 keV	2ν pileup bkg.	

Li₂¹⁰⁰MoO₄ crystal test

- Control of crystal internal content of ⁴⁰K < 5 mBq/kg (Random coincidences: 2v2β + ⁴⁰K << 2v2β + 2v2β)
- Mo purification / crystallization protocol with irrecoverable losses < 4%.
- Excellent crystal radiopurity and ease of production.
- Particle ID on heat channel via pulse shape

Li₂¹⁰⁰MoO₄: Pilot experiment

- Background due to 2v pileup: 10⁻⁴ counts/keV/kg/y to be improved via advanced pulse shape analysis.
- 20 crystals (209g each) have been ordered and will be operated at Modane and/or Gran Sasso(under discussion).
 - ▶ 2.46 kg of ¹⁰⁰Mo 1.35 x 10²⁵ nuclei.
 - Another 20 crystals to be ordered.

Option: TeO₂, again

¹³⁰**TeO**₂

	Zn ⁸² Se	Li ₂ ¹⁰⁰ MoO ₄	¹³⁰ TeO ₂
Q-Value [keV]	2998	3034	2528
Isotopic abundance [%]	9.2	9.7	34
T ^{2v} [years]	9 x 10 ¹⁹	7 x 10 ¹⁸	8 x 10 ²⁰
ΔE [keV FWHM]	10-30 (430 g bolometer)	5-8 (210 g)	5 (750 g)
Pros	Q-value R&D concluded	Q-value PID w/o light detector	ΔE
Cons	ΔΕ ²¹⁴ Bi at 3000 keV	2ν pileup bkg.	<i>γ bkg.</i> Challenging PID

Cherenkov readout from TeO₂

Noise of NTD-Ge light detectors is too high (30 -100 eV) compared to the signal (100 eV) → need noise lower than 20 eV RMS, with a technology scalable to 1000 detectors.

22

Energy (keV)

10000

Bi-Po

Light detectors: Neganov Luke

- Apply DC voltage to the wafer of the light detector.
- e-h pairs produced by photons are accelerated by the electric field ---- energy transfer to the wafer lattice *heat*.
- Use NTD-Germanium thermistor as sensor.

Silicon wafer + NTD on 6g TeO₂

6000

8000

Germanium wafer + NTD on 750g TeO₂ ight (photons)

M. Vignati

Light amplitude [a.u.]

Light detectors: TES sensor

Need to develop a 1000 channel readout of SQUIDs

Light detectors: MKID sensor

Microwave Kinetic Inductance Detector (MKID). high scalability and multiplexing, no microphonic noise.

• Phase I - completed: single pixel, high-Q (1.5x10⁵) Aluminum resonator.

- Phase II ongoing: test more sensitive superconductors (TiAI, TiN and Ti +TiN). Goal: 20 eV RMS resolution. TiAI preliminary: 55 eV RMS.
- **Phase III** 2017-18: test at LNGS with TeO₂ bolometers.

¹³⁰TeO₂: Pilot experiment

Backgrounds other than αs

- Need CUPID-0 (Zn⁸²Se) and CUORE data to confirm simulations.
- Anyhow, non- α background must be reduced by more than 10x
 - Need the development of technologies to measure contaminations of candidate materials for detector and cryostat (Copper, teflon...).
- Need a muon veto

Conclusions

- CUPID aims at completely covering the inverted hierarchy of v mass.
- 3 Pilot experiments:
 - ▶ 2016 Zn⁸²Se, start of data taking end of the year.
 - ▶ 2017 Li₂¹⁰⁰MoO₄
 - ▶ 2018 ¹³⁰TeO₂
- Selection of the best technology for CUPID.
- CUPID will start after CUORE, so after 2022-2023.

We are open to collaborations, contact us!