ZICOS – A NEW EXPERIMENT FOR NEUTRINOLESS DOUBLE BETA DECAY WITH ZIRCONIUM-96

Supported by Grant-in-Aid for Scientific Research on Innovative Areas No.24104501 and No.26105502

International Workshop on "Double Beta Decay and Underground Science" DBD16

Miyagi University of Education Y.Fukuda, Y.Kamei, Naringelile*, A.Obata* University of Tokyo, ICRP S.Moriyama Fukui University I.Ogawa Tokyo University of Science T.Gunji, S.Tsukada, R.Hayami ZICOS- Zirconium Complex in Organic Liquid Scintillator for neutrinoless double beta decay

Liquid Scintillator:

- (1) 10 wt.% Zr(iprac)₄ loaded in anisole
- (2) 49% of BC505 for Light Yield and 3.5% at 3.35MeV for energy resolution with 40% photo coverage.

Pure water surrounding inner detector in order to veto muons and external backgrounds.

Inner detector with 64% photo coverage with 20" PMT including 1.7ton Zirconium loaded 113 tons LS in fiducial volume. (Total vol. : 180 tons)

<u>tetralkis(isopropyl acetoacetate)</u> <u>zirconium</u> Zr(CH₃COCHCOOCH(CH₃)₂)₄ : Zr(iprac)₄ Molecular weights : 663.87

Solubility was obtained by 31.2 wt.% in anisole. (usually 10wt.% for LS)

 H_2

Liquid scintillator containing Zr(iprac)₄

Light yield of $48.7 \pm 7.1\%$ for BC505, and an energy resolution of $4.1 \pm 0.6\%$ at 3.35 MeV assuming <u>40%</u> photo coverage of the photomultiplier are obtained at 10wt.% concentration of Zr(iprac)₄ with 5 wt.% of PPO and 0.5wt.% of POPOP in anisole.

Design of ZICOS detector

Detector :

1) 180tons LS : 10 wt.% Zr(iprac)₄ with PPO/POPOP in anisole Need 500 of 20" PMT with high QE >0.3 and TTS < ~1ns = 64%photo coverage Expected performance : 1) Energy resolution ~2.8%@3.35MeV 2) $T_{1/2}(0\nu\beta\beta) > 10^{26}\chi$ ears, if both 1/20 BG reduction and 50% ⁹⁶Zr enrichment could be achieved.

Neutrino mass sensitivity of ZICOS experiment

Total mass : 180ton (fiducial volume : 113ton) 10wt.% $Zr(iprac)_4 = 12.6ton$ includes 1.7ton of Zirconium

 $= 45 \text{ kg of } 96 \overline{\text{Zr}}$ (natural abundance 2.6%)

 $T_{1/2}^{0\nu} > 1.2 \times 10^{25}y \leftarrow \text{Not enough for } 0\nu\beta\beta \text{ search}$

1) Zr enrichment 58.5% enrichment of 96 Zr (e.g. 57.3% for NEMO-3) 96 Zr will be 1.0 ton then $T_{1/2}{}^{0v} > 5 \times 10^{25}$ y

2) Lowering BG level (²⁰⁸Tl /²¹⁴Bi) i.e. < 1/20 × KL-Zen (~1.0events/ton/year) then $T_{1/2}^{0v} > 5 \times 10^{25}$ y Today's talk

Backgrounds around Q-value Measured by KamLAND-Zen

Need additional technique other than the energy spectral shape obtained by scintillation.

Radiation branch of Thallium-208

The vertex reconstructed by scintillation lights could be contaminated within fiducial volume due to gammas.

	y(i)
Radiations	(Bq-s) ⁻¹
beta- 5	2.27×10 ⁻⁰³
beta- 8	3.09×10 ⁻⁰²
beta- 10	6.30×10 ⁻⁰³
beta- 11	2.45×10 ⁻⁰¹
beta- 12	2.18×10^{-01}
beta- 13	4.87×10 ⁻⁰¹
ce-K, gamma 3	4.04×10 ⁻⁰³
gamma 4	6.31×10 ⁻⁰²
ce-K, gamma 4	2.84×10^{-02}
ce-L, gamma 4	4.87×10 ⁻⁰³
gamma 6	2.26×10^{-01}
ce-K, gamma 6	1.97×10^{-02}
ce-L, gamma 6	3.32×10 ⁻⁰³
gamma 7	8.45×10 ⁻⁰¹
ce-K, gamma 7	1.28×10^{-02}
ce-L, gamma 7	3.51×10 ⁻⁰³
gamma 13	1.81×10^{-02}
gamma 15	1.24×10^{-01}
ce-K, gamma 15	2.80×10^{-03}
gamma 19	3.97×10 ⁻⁰³
gamma 25	9.92×10 ⁻⁰¹

How to distinguish ²⁰⁸TI decay and DBD2

 $0\nu\beta\beta$ event

Reconstructed vertex by scintillation light

 β decay

2.6MeV γ

Reconstructed vertex by Cherenkov light Balloon or surface of detector

Reduction of ²⁰⁸TI decay

1) E: 3.0-3.7MeV 17925 events 2) Fiducial volume 628 events 3) Multi events 263 events 4) Closer events (d≦10cm) 35 events

1/20 BG reduction could be realized by identifying vertex.

Separation of Cherenkov light and scintillation

arXiv:1609.0986(simulation)

Rise time of Cherenkov light : an order of 100 pico seconds due to electro-magnetic process Rise time of Scintillation : an order of a few nano seconds

due to energy transport of

fluorescent material.

Possible to extract hits of PMT received Cherenkov lights by Pulse Shape Discrimination.

•CAEN V1721 8 channel 8bit 500MS/s FADC
•CAEN V2718 VME-PCI Optical Link Bridge

Light yield of Cherenkov lights

-1.0

-0.5

0.0

sample 9

0.5

1.0

 $\cos\theta$

-1.0

of electrons, Cherenkov photons look have some clusters.

0.0

sample 10

0.5

1.0

 $\cos\theta$

-0.5

DBD16

Angular dependence

Cherenkov light emitted by 1MeV e⁻ actually has an angular dependence.

MC reproduced angular dependence.

DBD16

Simulation of Cherenkov lights

Simulated by EGS5 (kinetic energy 1.675MeV)

Hard to detect Cherenkov events below 0.5MeV.

90

Reconstruction of vertex position

timing fit

 Vertex position for single e⁻ could be reconstructed by only Cherenkov light with resolution σ=10cm.
However, it needs non-overlap PMT hits for multi events.

Vertex position reconstructed by scintillation light is almost same as the position reconstructed by Cherenkov lights for single e⁻ and DBD event.

Averaged angle

Averaged angle with respect to averaged direction for single e⁻ seems to have a peak at ~48 degree which is almost same as Cherenkov angle.

Hit pattern of DBD (opposite and half E)

Simulated by EGS5 (kinetic energy 1.675MeV)

Generate position of DBD

Multi events from DBD tend to have a slightly larger values of averaged angle than single e⁻.

<u>Hit pattern of ²⁰⁸TI (2.6MeVy+ β +y)</u>

DBD16

<u>Summary</u>

- Conceptual design for ZICOS detector using 20" PMT with 64% photo coverage for detecting Cherenkov light is presented.
- Simulated Cherenkov lights with EGS5 show some directionalities and it could reproduce the angular dependence which was observed by real data.
- ► Need to develop PMT with high QE (>30%) and fast timing (TTS < ~1ns) in order to separate Cherenkov hits and obtain vertex resolution σ~10cm.
- Further 1/20 reduction of ²⁰⁸TI (and ²¹⁴Bi) decay backgrounds could be realized by Cherenkov bit pattern even using vertex obtained by scintillation. (we should confirm using proto-type detector.)