Recent Results from T2K

DBD16 – Osaka 9th Nov

James Imber LLR – Ecole Polytechnique

On behalf of the T2K collaboration

Three neutrino mixing

 PMNS framework Interact as weak process eigenstates ν_α $\nu_{_{\beta}}$ Propagate as mass eigenstates $\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = U_{PMNS} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix} \qquad \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$ $U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & +c_{23} & +s_{23} \\ 0 & -s_{23} & +c_{23} \end{pmatrix} \begin{pmatrix} +c_{13} & 0 & +s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & +c_{13} \end{pmatrix} \begin{pmatrix} +c_{12} & +s_{12} & 0 \\ -s_{12} & +c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha_{1}} & 0 & 0 \\ 0 & e^{i\alpha_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

> Current knowledge: $\begin{array}{l}
> \theta_{12} \approx 33^{\circ} \\
> \theta_{23} \approx 45^{\circ} \\
> \theta_{13} \approx 9^{\circ}
> \end{array}$ $\begin{array}{l}
> \Delta m_{21}^{2} \approx 7.5 \times 10^{-5} \, \text{eV}^{2} \\
> \Delta m_{32}^{2} \approx 2.5 \times 10^{-3} \, \text{eV}^{2} \\
> \Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}
> \end{array}$

Oscillations

AppearanceLeading term
$$P(v_{\mu} \rightarrow v_{e}) = 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \times \left(1 \pm \frac{2a}{\Delta m_{31}^{2}}(1-s_{13}^{2})\right)$$
Leading term Vv_{e}, \overline{v} $+8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta - s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$ CP Conserving $\overline{v}v_{s,\overline{v}}$ \overline{v} \overline{v} \overline{v} \overline{v} $sign \overline{v} $\overline{v}$$

Questions

- θ_{23} Octant? (θ_{23} <, > or = 45°)
 - Sensitivity to $\sin^2\theta_{23}$ (same for v and \overline{v})
- CP violation?

− δ_{CP} =-π/2 → enhance ($\nu_{\mu} \rightarrow \nu_{e}$), suppress ($\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$)

-
$$\delta_{CP} = \pi/2 \rightarrow (\nu_{\mu} \rightarrow \nu_{e})$$
 enhance , suppress $(\nu_{\mu} \rightarrow \nu_{e})$

±30% effect at T2K

09/11/16

J. Imber | LLR – Ecole Polytechnique

T2K Experiment

- Measure *N* events
- Compare events observed at near and far detector
- Extract oscillation probability

$$N_{ND} \sim \Phi_{ND} \cdot \sigma_{ND} \cdot \epsilon_{ND}$$
Observable Flux Cross Detector
section response
$$N_{FD} \sim \Phi_{FD} \cdot \sigma_{FD} \cdot \epsilon_{FD} \cdot P_{Osc}.$$

09/11/16

Off-axis Beam

J-PARC

30GeV

0m

- High purity v_u beam
- Enhanced oscillation Lower energy beam tuned to maximise oscillations at baseline
- Enhanced CCQE fraction Energy reconstruction at Super-Kamiokande
- Reduced intrinsic v_{e} contamination

Neutrino Cross section

Reduced Neutral Current event feed down

Near Detectors

Super-Kamiokande Detector

50kton Water Cherenkov detector CCQE • Optically separate inner and outer (veto) volumes • Excellent e/μ separation, π^0 rejection • Select single ring, CCOE enriched samples **CC1**π • E_v(CCQE) determined from lepton kinematics e Signal $v_{\alpha} + n \rightarrow l_{\alpha}^{-} + p \qquad \overline{v}_{\alpha} + p \rightarrow l_{\alpha}^{+} + n$ multi-ring Background $v_{\alpha} + n(p) \rightarrow l_{\alpha}^{-} + n(p) + \pi^{+}$ $v_{\alpha} + n(p) \rightarrow v_{\alpha} + n(p) + \pi^{0}$ 39m

Ð

nttp://www.ps.uci.edu/~tomba/sk/tscan/compare_mu

T2K Oscillation Analysis Overview

Flux Prediction

- Flux simulation (FLUKA/GEANT3/GCALOR)
- Tuned using external data → NA61/SHINE experiment measures hadron production from thin carbon target and T2K replica target
- Large neutrino component in antineutrino flux
- Intrinsic $\nu_{\rm e}$ component ~0.5% at flux peak

Neutrino Mode Flux at SK

Antineutrino Mode Flux at SK

Flux Uncertainties

09/11/16

J. Imber | LLR – Ecole Polytechnique

12

Cross-section Model

- NEUT* generator tuned to external data from MiniBooNE, MINERvA and Bubble Chambers
- CCQE: Relativistic Fermi Gas (RFG) + rel. Random Phase Approximation (RPA)
- Multinucleon interactions implemented
 - ~10% relative to CCQE
 - 2p2h model by Nieves et al.*
- Additional freedom for antineutrinos
 - 2p-2h normalisation (see right)
 - $\bar{\nu}_e / \bar{\nu}_\mu$ cross-section ratio ($\nu_e / \bar{\nu}_e$ cross sections not yet explicitly constrained by the near detector fit)
- Fractional error on $N_{SK} \approx 7.1-7.7\%$ (pre-fit)

Large difference in ratio of 2p-2h crosssection models between neutrinos and antineutrinos

*Y. Hayato, A neutrino interaction simulation program library NEUT, Acta Phys. Pol. B 40, 2477 (2009)

†J. Nieves, I. R. Simo, and M. J. V. Vacas, The nucleon axial mass and the miniboone quasielastic neutrino-nucleus scattering problem, Phys. Lett. B 707, 72 (2012).

09/11/16

J. Imber | LLR – Ecole Polytechnique

Near Detector Fit

09/11/16

Flux Parameter Fit

- Each model parameter in the analysis has associated systematic uncertainty
- Near detector fit constrains flux and cross-section uncertainty propagated to far detector as covariance
- Separate "on-water" constraint from ND280 for the first time
- ND280 "wrong sign" constraint in $\overline{\nu}$ -mode

Total N _{sκ} Fractional Uncertainty			
Beam mode	Sample type	w/o ND280	w/ ND280
neutrino	µ-like	12.0%	5.03%
neutrino	e-like	11.9%	5.41%
anti-neutrino	µ-like	12.5%	5.22%
anti-neutrino	e-like	13.7%	6.19%

Accumulation of Data

Antineutrino exposure doubled in Run7

27 May 2016 POT total: 1.510×10²¹ ν-mode POT: 7.57×10²⁰ (50.14%) ⊽-mode POT: 7.53×10²⁰ (49.86%)

Beam power reached 420 kW

POT = Protons On Target

Results presented today use: 12,831,370 beam spills v-mode: 7.482×10²⁰ POT v-mode: 7.471×10²⁰ POT

Far Detector $\nu_{_{\mu}}$ and $\nu_{_{\mu}}$ Samples

- ν mode: 135 events
- $\overline{\nu}$ mode: 66 events

Single ring μ -like selection

- 1. Fully contained, Fiducial volume
- 2. Single ring
- 3. Muon-like
- 4. Momentum > 200 MeV
- 5. Zero or one decay electrons

Far Detector v_e and \overline{v}_e Samples

- ν mode: 32 events
- $\overline{\nu}$ mode: 4 events

Single ring e-like selection

- 1. Fully contained, Fiducial volume
- 2. Single ring
- 3. Electron-like
- 4. Visible energy >100 MeV
- 5. Zero decay electrons
- 6. Reconstructed energy < 1.25 GeV
- 7. Not pi0-like

T2K Osc. Analysis History

Joint Analysis Results – $\theta_{23} \& \Delta m_{32}^2$

Compatible with other experimental results

09/11/16

 $|\Delta m^2_{32}|$

(×10⁻³ eV²)

2.545^{+0.081}

-0.084

-0.083

2.510^{+0.081}

Joint Analysis Results – θ_{13}

- T2K-only measurement consistent with reactor results
- Favours "small" $\sin^2\theta_{13}$ and large CPV

Joint Analysis Results – δ_{c} CP

Expected Number of Events (NH)			Observed		
	δ _{CP} =-π/2	δ _{CP} =0	δCP=+π/2	δ _{CP} =π	
ν _e -like	28.7	24.2	19.6	24.2	32
\overline{v}_{e} -like	6.0	6.9	7.7	6.8	4

- More v_{e} appearance events than expected + fewer \overline{v}_{e} appearance events than expected
- Data prefers largest CP asymmetry $\delta_{CP} \approx -\pi/2$, normal hierarchy

CP conservation ($\delta_{CP} = 0, \pi$) disfavoured at 90% C.L.

Number of \overline{V}_e candidates

Inverted hierarchy: CP= [-2.09, -0.74] [-120°, -42°] at 90% CL

Joint Analysis Results - MH

- T2K Bayesian Analysis
 - Integrate over posterior likelihood to compare hypotheses

Bayesian Posterior Probabilities			
	$\sin^2 \theta_{23} < 0.5$	$\sin^2 \theta_{23} < 0.5$	Line Total
Inverted Hierarchy	0.10	0.14	0.25
Normal Hierarchy	0.29	0.46	0.75
Column Total	0.39	0.61	1

Weak preference for Normal Hierarchy

Antineutrino Fits

- Methodology
 - Allow antineutrinos to oscillate differently to current PMNS description for neutrinos
 - Use neutrino samples to constrain wrong sign background parameters

 $\overline{\nu}_{\mu}$ disappearance test of CPT

$$\overline{\theta}_{23} \neq \theta_{23}$$
, $\Delta \overline{m}_{32}^2 \neq \Delta m_{32}^2$

Test of $\overline{\nu}_{e}$ appearance

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = \beta \times P_{PMNS}(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$$

v_{e} appearance

- \overline{v}_e appearance not yet observed
- Test the hypothesis

 $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = \beta \times P_{PMNS}(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$

- Consider cases $\beta=0$, $\beta=1$
- Rate only and Rate+Shape
- Data preference inconclusive

Results Summary		
	P-value (β=0)	P-value (β=1)
Rate Only	0.41	0.21
Rate+shape	0.46	0.07

Two events more background-like

Sensitivity:

65% of β =1 toy experiments return P-value(β =0) \leq 0.05 in rate+shape analysis

09/11/16

v_{μ} disappearance

- Test CPT invariance $\overline{\theta}_{23} \neq \theta_{23}, \Delta \overline{m}_{32}^2 \neq \Delta m_{32}^2$
- Good agreement between $P_{PMNS}(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu})$ and $P_{PMNS}(\nu_{\mu} \rightarrow \nu_{\mu})$

Future of T2K

- Staged beam upgrade to increase intensity
 - 420 kW \rightarrow 750 kW \rightarrow 1.3 MW
- Sample selection development to increase statistics
 - Fiducial volume expansion, CC nonQE event samples, multi-ring (~+40%)
- Analysis improvements to reduce sys. Uncertainties $6\% \rightarrow 4\%$
- Proposal for extension of T2K with phase II
 - Increase POT collected $7.8 \times 10^{21} \rightarrow 20.0 \times 10^{21}$
- Beam Upgrade
 - To 750 kW Decrease bunch interval (2.48 sec → 1.3 sec)
 - Replace Main Ring Power Supply
 - Upgrade MR RF
 - To 1.3 MW Further decrease in bunch interval (1.3 sec → 1.16 sec) and Increase protons per bunch $2.7 \times 10^{14} \rightarrow 3.2 \times 10^{14}$
 - Increase horn current 250 kA → 320 kA (~+10% stats)

Oscillation Analysis Prospects

With +50% effective statistics/POT and reduced uncertainties

Summary

- Accumulated 15×10²⁰ POT (~20% of total)
 - Data taking has resumed following the Summer break
- First fully-joint oscillation analysis completed
 - $\nu_e / \overline{\nu}_e$ appearance and $\nu_\mu / \overline{\nu}_\mu$ disappearance joint fit
 - Water target and "wrong sign" constraints from near detector
 - Data consistent with θ_{23} at maximal mixing, $\delta_{CP} \sim -\pi/2$, normal hierarchy
 - CP conservation $\delta_{CP} = (0,\pi)$ disfavoured at 90% C.L.
- Beam power continues to increase anticipate 750kW in near future, first stage approved
- T2K-phase II
 - Accelerator and beamline upgrades \rightarrow 1.3MW
 - Run to 2026, accumulate 20×10²¹ POT

The T2K Collaboration

~ 500 members, 61 Institutes, 11 countries

Canada

TRIUMF U. B. Columbia U. Regina U. Toronto U. Victoria U. Winnipeg York U.

France

CEA Saclay IPN Lyon LLR E. Poly. LPNHE Paris

Germany

Aachen

Italy
INFN, U. Bari
INFN, U. Napoli
INFN, U. Padova
INFN, U. Roma

Japan

ICRR Kamioka **ICRR RCCN** Kavli IPMU **KEK** Kobe U. Kyoto U. Miyagi U. Edu. Okayama U. Osaka City U. Tokyo Metropolitan U. U. Tokyo

Poland Switzerland **IFJ PAN, Cracow** NCBJ, Warsaw U. Silesia, Katowice U. Warsaw Warsaw U. T.

Wroclaw U.

Russia

INR

Spain

IFAE, Barcelona U. Liverpool U. Sheffield IFIC, Valencia U. Warwick U. Autonoma Madrid

ETH Zurich U. Bern U. Geneva

United Kingdom Imperial C. London Lancaster U. Oxford U. Queen Mary U. L. Royal Holloway U.L. STFC/Daresbury

STFC/RAL

USA

Boston U. Colorado S. U. Duke U. Louisiana State U. Michigan S.U. Stony Brook U. U.C. Irvine U. Colorado U. Pittsburgh U. Rochester

U. Washington

Supplemental

Neutrino Beamline

T2K Event Timing

Extraction of T2K events

ND280 Fit

Event Selection at Super-K

J. Imber | LLR – Ecole Polytechnique

Event Selection at Super-K

09/11/16

J. Imber | LLR – Ecole Polytechnique

P-theta distributions

Nue and Nuebar samples

Joint Analysis Results - $\nu_{_{e}}$ and $\nu_{_{e}}$

Comparison to NOvA Best-Fit Spectra

Joint Analysis Results - v_{μ} and v_{μ}

Comparison to NOvA Best-Fit Spectra

Vacuum Oscillations

$$P(v_{\mu} \rightarrow v_{e}) = 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31}$$

$$+8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta - s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$$

$$-8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$$

$$-8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$$

$$+4s_{12}^{2}c_{13}^{2}(c_{12}c_{23} + s_{12}^{2}s_{13}^{2}s_{23}^{2} - 2c_{12}c_{23}s_{12}s_{13}s_{23}\cos\delta)\sin^{2}\Delta_{21}$$

$$Solar$$

$$c_{\mu} = \cos\theta_{\mu} , s_{\mu} = \sin\theta_{\mu} \quad \Delta_{\mu} = \Delta m_{\mu}^{2}\frac{L}{4E_{\nu}}$$

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \left(\cos^{4}\theta_{13} \cdot \sin^{2}2\theta_{23} + \sin^{2}2\theta_{13} \cdot \sin^{2}\theta_{23}\right) \cdot \sin^{2}\frac{\Delta m_{32}^{2} \cdot L}{4E}$$

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \left(\cos^{4}\theta_{13} \cdot \sin^{2}2\theta_{23} + \sin^{2}2\theta_{13} \cdot \sin^{2}\theta_{23}\right) \cdot \sin^{2}\frac{\Delta m_{32}^{2} \cdot L}{4E}$$

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \left(\cos^{4}\theta_{13} \cdot \sin^{2}2\theta_{23} + \sin^{2}2\theta_{13} \cdot \sin^{2}\theta_{23}\right) \cdot \sin^{2}\frac{\Delta m_{32}^{2} \cdot L}{4E}$$