Recent Results from T2K

DBD16 - Osaka $9^{\text {th }}$ Nov

James Imber
LLR - Ecole Polytechnique

On behalf of the T2K collaboration

Three neutrino mixing

- PMNS framework

Interact as weak process eigenstates Propagate as mass eigenstates
$\xrightarrow[\text { v. }]{\text { v. }}\left(\begin{array}{l}\nu_{e} \\ v_{u} \\ v_{\tau}\end{array}\right)=U_{\text {PMNS }}\left(\begin{array}{l}\nu_{1} \\ v_{2} \\ v_{3}\end{array}\right)$

$$
U_{P M N S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & +c_{23} & +s_{23} \\
0 & -s_{23} & +c_{23}
\end{array}\right)\left(\begin{array}{ccc}
+c_{13} & 0 & +s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & +c_{13}
\end{array}\right)\left(\begin{array}{ccc}
+c_{12} & +s_{12} & 0 \\
-s_{12} & +c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
e^{i \alpha_{1}} & 0 & 0 \\
0 & e^{i \alpha_{2}} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\begin{array}{lll}
\text { Current knowledge: } & \theta_{12} \approx 33^{\circ} & \Delta \mathrm{m}_{21}^{2} \approx 7.5 \times 10^{-5} \mathrm{eV}^{2} \\
& \theta_{23} \approx 45^{\circ} & \left|\Delta \mathrm{m}_{32}^{2}\right| \approx 2.5 \times 10^{-3} \mathrm{eV}^{2} \\
& \theta_{13} \approx 9^{\circ} &
\end{array}
$$

$$
\begin{aligned}
c_{i j} & =\cos \theta_{i j} \\
s_{i j} & =\sin \theta_{i j} \\
\Delta m_{i j}^{2} & =m_{i}^{2}-m_{j}^{2}
\end{aligned}
$$

Oscillations

Appearance

$$
\begin{aligned}
P\left(v_{\mu} \rightarrow v_{e}\right)= & 4 c_{13}^{2} s_{13}^{2} s_{23}^{2} \sin ^{2} \Delta_{31} \times\left(1 \pm \frac{2 a}{\Delta m_{31}^{2}}\left(1-s_{13}^{2}\right)\right) \\
& +8 c_{13}^{2} s_{12} s_{13} s_{23}\left(c_{12} c_{23} \cos \delta-s_{12} s_{13} s_{23}\right) \cos \Delta_{32} \sin \Delta_{31} \sin \Delta_{21}
\end{aligned}
$$

Leading term
CP Conserving
vvs. \bar{v}
sign change

$$
\begin{aligned}
& \mp 8 c_{13}^{2} s_{13}^{2} s_{23}^{2} \cos \Delta_{32} \sin \Delta_{31} \frac{a L}{4 E}\left(1-2 s_{13}^{2}\right) \\
& \mp 8 c_{13}^{2} c_{12} c_{23} s_{12} s_{13} s_{23} \underline{\sin \delta} \sin \Delta_{32} \sin \Delta_{31} \sin \Delta_{21} \\
& +4 s_{12}^{2} c_{13}^{2}\left(c_{12} c_{23}+s_{12}^{2} s_{13}^{2} s_{23}^{2}-2 c_{12} c_{23} s_{12} s_{13} s_{23} \cos \delta\right) \sin ^{2} \Delta_{21}
\end{aligned}
$$

Matter effect
CP Violating
Solar term
$c_{i j}=\cos \theta_{i j}, \quad s_{i j}=\sin \theta_{i j} \quad \Delta_{i j}=\Delta m_{i j}^{2} \frac{L}{4 E_{v}} \quad a=2 \sqrt{2} G_{F} n_{e} E$
θ_{13} dependence Octant Sensitivity CP odd phase

Disappearance

$P\left(v_{u} \rightarrow v_{\mu}\right) \approx 1-\left(\cos ^{4} \theta_{13} \cdot \sin ^{2} 2 \theta_{23}+\sin ^{2} 2 \theta_{13} \cdot \sin ^{2} \theta_{23}\right) \cdot \sin ^{2} \frac{\Delta m_{32}^{2} \cdot L}{4 E_{v}}$
θ_{23} dependence Octant Sensitivity $\quad P_{P M N S}\left(\bar{v}_{\mu} \rightarrow \bar{v}_{\mu}\right)=P_{P M N S}\left(v_{\mu} \rightarrow v_{\mu}\right)$ Test of CPT

Questions

- θ_{23} Octant? $\left(\theta_{23}<,>\right.$ or $\left.=45^{\circ}\right)$
- Sensitivity to $\sin ^{2} \theta_{23}$ (same for v and \bar{v})
- CP violation?
- $\delta_{\mathrm{CP}}=0, \pi \rightarrow$ no CP violation
$-\delta_{\mathrm{CP}}=-\pi / 2 \rightarrow$ enhance $\left(\nu_{\mu} \rightarrow v_{\mathrm{e}}\right)$, suppress $\left(\bar{v}_{\mu} \rightarrow \bar{v}_{\mathrm{e}}\right)$
$-\delta_{\mathrm{CP}}=\pi / 2 \rightarrow\left(\bar{v}_{\mu} \rightarrow \bar{v}_{\mathrm{e}}\right)$ enhance, suppress $\left(\nu_{\mu} \rightarrow v_{\mathrm{e}}\right)$
- Mass hierarchy?
- enhance $\left(\nu_{\mu} \rightarrow v_{e}\right)$
- suppress $\left(\bar{v}_{\mu} \rightarrow \bar{v}_{e}\right)$
inverted hierarchy (IH)
$\pm 10 \%$ effect at T2K
- enhance $\left(\bar{v}_{\mu} \rightarrow \bar{v}_{\mathrm{e}}\right)$
- suppress $\left(\nu_{\mu} \rightarrow v_{e}\right)$

T2K Experiment

- Measure N events
- Compare events observed at near and far detector
- Extract oscillation

Near Detector J-PARC probability

$$
\begin{gathered}
N_{N D} \sim \Phi_{N D} \cdot \sigma_{N D} \cdot \epsilon_{N D} \\
\text { Observable } \\
N_{F D} \sim \Phi_{F D} \cdot \underset{\substack{\text { Cross } \\
\text { section } \\
\text { Detector } \\
\text { response }}}{\sigma_{F D} \cdot \epsilon_{F D} \cdot P_{\text {Osc } .} .}
\end{gathered}
$$

Off-axis Beam

- High purity $\mathrm{v}_{\mathrm{\mu}}$ beam
- Enhanced oscillation - Lower energy beam tuned to maximise oscillations at baseline
- Enhanced CCQE fraction - Energy reconstruction at Super-Kamiokande
- Reduced intrinsic v_{e} contamination
- Reduced Neutral Current event feed down

Neutrino Cross section

Antineutrino Cross section

Near Detectors

- 7+7 (+2) identical modules
- Iron and scintillator tracking calorimeter
- Beam direction and stability monitoring

ND280

Downstream ECAL

- Off-axis detector
- Magnet 0.2 T
- Trackers, Calorimeters and muon range detectors
- Active (scintillator) and passive (water) targets

Super-Kamiokande Detector

- 50kton Water Cherenkov detector
- Optically separate inner and outer (veto) volumes
- Excellent e/ μ separation, π^{0} rejection
- Select single ring, CCQE enriched samples
- $\mathrm{E}_{\mathrm{v}}(C C Q E)$ determined from lepton kinematics

- Signal

$$
v_{\alpha}+n \rightarrow l_{\alpha}^{-}+p \quad \bar{v}_{\alpha}+p \rightarrow l_{\alpha}^{+}+n
$$

- Background

$$
\begin{aligned}
& v_{\alpha}+n(p) \rightarrow l_{\alpha}^{-}+n(p)+\pi^{+} \\
& v_{\alpha}+n(p) \rightarrow v_{\alpha}+n(p)+\pi^{0}
\end{aligned}
$$

T2K Oscillation Analysis Overview

Flux Prediction

- Flux simulation (FLUKA/GEANT3/GCALOR)
- Tuned using external data \rightarrow NA61/SHINE experiment measures hadron production from thin carbon target and T2K replica target
- Large neutrino component in antineutrino flux
- Intrinsic v_{e} component $\sim 0.5 \%$ at flux peak

Flux Uncertainties

- Beamline uncertainties
- Proton beam parameters
- Focusing Horn
- Component alignment
- Hadron production uncertainties
- NA61/SHINE uncertainties
- Re-interactions
- Secondary production

High statistics monitoring of beam

Frac. error on N_{sk} $\approx 7.7-8.8 \%$ (pre-fit)

SK: Neutrino Mode, v_{μ}

Cross-section Model

- NEUT* generator tuned to external data from MiniBooNE, MINERvA and Bubble Chambers
- CCQE: Relativistic Fermi Gas (RFG) + rel. Random Phase Approximation (RPA)
- Multinucleon interactions implemented
- -10% relative to CCQE
- 2p2h model by Nieves et al. ${ }^{\dagger}$
- Additional freedom for antineutrinos
- 2p-2h normalisation (see right)
- $\bar{v}_{\mathrm{e}} / \bar{\nu}_{\mu}$ cross-section ratio ($v_{\mathrm{e}} / \bar{v}_{\mathrm{e}}$ cross sections not yet explicitly constrained by the near detector fit)

Large difference in ratio of $2 p-2 h$ crosssection models between neutrinos and antineutrinos

- Fractional error on $\mathrm{N}_{\mathrm{SK}} \approx 7.1-7.7 \%$ (pre-fit)
*Y. Hayato, A neutrino interaction simulation program library NEUT, Acta Phys. Pol. B 40, 2477 (2009)
\dagger J. Nieves, I. R. Simo, and M. J. V. Vacas, The nucleon axial mass and the miniboone quasielastic neutrino-nucleus scattering problem, Phys. Lett. B 707, 72 (2012).

antineutrino

Near Detector Fit

Flux Parameter Fit

- Each model parameter in the analysis has associated systematic uncertainty
- Near detector fit constrains flux and cross-section uncertainty propagated to far detector as covariance
- Separate "on-water" constraint from ND280 for the first time
- ND280 "wrong sign" constraint in \bar{v}-mode

Total $N_{\text {SK }}$ Fractional Uncertainty			
Beam mode	Sample type	w/o ND280	w/ ND280
neutrino	μ-like	12.0%	5.03%
neutrino	e-like	11.9%	5.41%
anti-neutrino	μ-like	12.5%	5.22%
anti-neutrino	e-like	13.7%	6.19%

Accumulation of Data

- Antineutrino exposure doubled in Run7

27 May 2016
POT total: 1.510×10^{21}
v-mode POT: 7.57×10^{20} (50.14\%) \bar{v}-mode POT: 7.53×10^{20} (49.86\%)

- Beam power reached 420 kW
POT = Protons On Target

Results presented today use:

12,831,370 beam spills
v-mode: 7.482×10^{20} POT \bar{v}-mode: 7.471×10^{20} POT

Far Detector ν_{μ} and \bar{v}_{μ} Samples

- v mode: 135 events
- \bar{v} mode: 66 events

Single ring μ-like selection

1. Fully contained, Fiducial volume
2. Single ring
3. Muon-like
4. Momentum $>200 \mathrm{MeV}$
5. Zero or one decay electrons

Far Detector v_{e} and \bar{v}_{e} Samples

- v mode: 32 events
- \bar{v} mode: 4 events

Single ring e-like selection

1. Fully contained, Fiducial volume
2. Single ring
3. Electron-like
4. Visible energy $>100 \mathrm{MeV}$
5. Zero decay electrons
6. Reconstructed energy < 1.25 GeV
7. Not piO-like

T2K Osc. Analysis History

v_{e} appearance

Phys. Rev. Lett. 112 (2014) 061802

- Previous analyses
---- Analyses updated in 2016
v joint fit
Phys. Rev. D 91 (2015) 072010

ν_{μ} disappearance
 Phys. Rev. Lett 112 (2014) 181801

\bar{v}_{μ} disappearance
Phys. Rev. Lett. 116 (2016) 181801
~Time

Joint Analysis Results $-\theta_{23} \& \Delta \mathrm{~m}^{2}$

$$
\begin{gathered}
\text { T2K + reactor } \\
\left(\sin ^{2} 2 \theta_{13}=0.085 \pm 0.005\right)
\end{gathered}
$$

- Data consistent with maximal mixing
- Compatible with other experimental results

1D Parameter Constraints

	NH.	IH.
$\boldsymbol{\operatorname { s i n }}^{\mathbf{2}} \boldsymbol{\theta}_{23}$	$0.532^{+0.046}{ }_{-0.068}$	$0.534^{+0.043}{ }_{-0.07}$
$\begin{gathered} \left\|\Delta \mathrm{m}_{32}^{2}\right\| \\ \left(\times 1 \mathbf{1 0}^{-3} \mathbf{e V}^{2}\right) \end{gathered}$	$2.545^{+0.081}{ }_{-0.084}$	$2.510^{+0.081}{ }_{-0.083}$

Joint Analysis Results - θ

T2K-only

T2K + reactor

- T2K-only measurement consistent with reactor results
- Favours "small" $\sin ^{2} \theta_{13}$ and large CPV

Joint Analysis Results - δ

CP

	Expected Number of Events (NH)				
Observed					
	$\boldsymbol{\delta}_{\mathrm{CP}}=-\pi / 2$	$\boldsymbol{\delta}_{\mathrm{CP}}=\mathbf{0}$	$\boldsymbol{\delta}_{\mathrm{CP}}=+\pi / 2$	$\boldsymbol{\delta}_{\mathrm{CP}}=\pi$	
\mathbf{v}_{e}-like	28.7	24.2	19.6	24.2	32
\bar{v}_{e}-like	6.0	6.9	7.7	6.8	4

- More v_{e} appearance events than expected + fewer \bar{v}_{e} appearance events than expected
- Data prefers largest CP asymmetry $\delta_{C P} \approx-\pi / 2$, normal hierarchy

CP conservation ($\delta_{\mathrm{CP}}=0, \pi$) disfavoured at 90% C.L.

Normal hierarchy: $\mathrm{CP}=[-3.13,-0.39]\left[-179^{\circ},-22^{\circ}\right]$ at $90 \% \mathrm{CL}$
Inverted hierarchy: $\mathrm{CP}=[-2.09,-0.74]\left[-120^{\circ},-42^{\circ}\right]$ at $90 \% \mathrm{CL}$

Joint Analysis Results - MH

- T2K Bayesian Analysis
- Integrate over posterior likelihood to compare hypotheses

Bayesian Posterior Probabilities			
	$\sin ^{2} \boldsymbol{\theta}_{23}<0.5$	$\sin ^{2} \theta_{23}<0.5$	Line Total
Inverted Hierarchy	0.10	0.14	0.25
Normal	0.29	0.46	0.75
Hierarchy Column	0.39	0.61	1
Total			

Weak preference for Normal Hierarchy

Antineutrino Fits

- Methodology
- Allow antineutrinos to oscillate differently to current PMNS description for neutrinos
- Use neutrino samples to constrain wrong sign background parameters
\bar{v}_{μ} disappearance test of CPT

$$
\bar{\theta}_{23} \neq \theta_{23}, \Delta \bar{m}_{32}^{2} \neq \Delta m_{32}^{2}
$$

Test of \bar{v}_{e} appearance

$$
P\left(\bar{v}_{\mu} \rightarrow \bar{v}_{e}\right)=\beta \times P_{P M N S}\left(\bar{v}_{u} \rightarrow \bar{v}_{e}\right)
$$

v_{e} appearance

- \bar{v}_{e} appearance not yet observed
- Test the hypothesis

$$
P\left(\bar{v}_{u} \rightarrow \bar{v}_{e}\right)=\beta \times P_{P M N S}\left(\bar{v}_{u} \rightarrow \bar{v}_{e}\right)
$$

- Consider cases $\beta=0, \beta=1$
- Rate only and Rate+Shape
- Data preference inconclusive

Results Summary		
	P-value $(\beta=0)$	P-value $(\beta=1)$
Rate Only	0.41	0.21
Rate+shape	0.46	0.07

- Two events more background-like

Sensitivity:
65% of $\beta=1$ toy experiments return P-value $(\beta=0) \leq 0.05$ in rate+shape analysis

\bar{v}_{μ} disappearance

- Test CPT invariance $\bar{\theta}_{23} \neq \theta_{23}, \Delta \bar{m}_{32}^{2} \neq \Delta m_{32}^{2}$
- Good agreement between $P_{P M N S}\left(\bar{v}_{u} \rightarrow \bar{v}_{u}\right)$ and $P_{P M N S}\left(v_{u} \rightarrow v_{u}\right)$

Inverted Hierarchy

Future of T2K

- Staged beam upgrade to increase intensity
- $420 \mathrm{~kW} \rightarrow 750 \mathrm{~kW} \rightarrow 1.3 \mathrm{MW}$
- Sample selection development to increase statistics
- Fiducial volume expansion, CC nonQE event samples, multi-ring ($\sim+40 \%$)
- Analysis improvements to reduce sys. Uncertainties $6 \% \rightarrow 4 \%$
- Proposal for extension of T2K with phase II
- Increase POT collected $7.8 \times 10^{21} \rightarrow 20.0 \times 10^{21}$
- Beam Upgrade
- To 750 kW - Decrease bunch interval ($2.48 \mathrm{sec} \rightarrow 1.3 \mathrm{sec}$)
- Replace Main Ring Power Supply
- Upgrade MR RF
- To 1.3 MW Further decrease in bunch interval ($1.3 \mathrm{sec} \rightarrow 1.16 \mathrm{sec}$) and Increase protons per bunch $2.7 \times 10^{14} \rightarrow 3.2 \times 10^{14}$
- Increase horn current $250 \mathrm{kA} \rightarrow 320 \mathrm{kA}$ ($\sim+10 \%$ stats)

Oscillation Analysis Prospects

- With $+50 \%$ effective statistics/POT and reduced uncertainties

Summary

- Accumulated 15×10^{20} POT ($\sim 20 \%$ of total)
- Data taking has resumed following the Summer break
- First fully-joint oscillation analysis completed
- $v_{\mathrm{e}} / \bar{v}_{\mathrm{e}}$ appearance and $v_{\mu} / \bar{\nu}_{\mu}$ disappearance joint fit
- Water target and "wrong sign" constraints from near detector
- Data consistent with θ_{23} at maximal mixing, $\delta_{\mathrm{CP}} \sim-\pi / 2$, normal hierarchy
- CP conservation $\delta_{\mathrm{CP}}=(0, \pi)$ disfavoured at 90% C.L.
- Beam power continues to increase - anticipate 750 kW in near future, first stage approved
- T2K-phase II
- Accelerator and beamline upgrades $\rightarrow 1.3 \mathrm{MW}$
- Run to 2026, accumulate 20×10^{21} POT

The T2K Collaboration

~ 500 members, 61 Institutes, 11 countries

Canada	Italy	Poland	Switzerland	USA
TRIUMF	INFN, U. Bari	IFJ PAN, Cracow	ETH Zurich	Boston U.
U. B. Columbia	INFN, U. Napoli	NCBJ, Warsaw	U. Bern	Colorado S. U.
U. Regina	INFN, U. Padova	U. Silesia, Katowice	U. Geneva	Duke U.
U. Toronto	INFN, U. Roma	U. Warsaw		Louisiana State U.
U. Victoria		Warsaw U. T.	United Kingdom	Michigan S.U.
U. Winnipeg	Japan	Wroclaw U.	Imperial C. London	Stony Brook U.
York U.	ICRR Kamioka		Lancaster U.	U. C. Irvine
	ICRR RCCN		Oxford U.	U. Colorado
France	Kavli IPMU	Russia	Queen Mary U. L.	U. Pittsburgh
CEA Saclay	KEK	INR	Royal Holloway U.L. U. Rochester	
IPN Lyon	Kobe U.		STFC/Daresbury	U. Washington
LLR E. Poly.	Kyoto U.	Spain	STFC/RAL	
LPNHE Paris	Miyagi U. Edu.	IFAE, Barcelona	U. Liverpool	
Okayama U.	IFIC, Valencia	U. Sheffield		
Gachen	Osaka City U.	U. Autonoma Madrid	U. Warwick	
	Tokyo Metropolitan U.			

Supplemental

Neutrino Beamline

T2K Event Timing

- Extraction of T2K events

All data extracted

Fully-contained \&\& $\Delta \mathrm{T}_{0}-2-10 \mu \mathrm{~s}$
Tue Jul 5 01:1s
w.r.t. bunch centre

ND280 Fit

- FGD1 - post-fit

\checkmark beam mode

CC 1pi

CC other

\bar{v} beam mode

Nu CC 1trck

Nu CC 2trck

Nubar CC 1trck

Nubar CC 2trck

Event Selection at Super-K

- e-like sample selection

v beam mode

Event Selection at Super-K

- μ-like sample selection

v beam mode

\bar{v} beam mode

P-theta distributions

- Nue and Nuebar samples

Joint Analysis Results $-v_{e}$ and \bar{v}_{e}

- Comparison to NOvA Best-Fit Spectra

Joint Analysis Results $-\nu_{\mu}$ and \bar{v}_{μ}

- Comparison to NOvA Best-Fit Spectra

Vacuum Oscillations

$$
\begin{aligned}
P\left(v_{\mu} \rightarrow v_{e}\right)= & 4 c_{13}^{2} s_{13}^{2} s_{23}^{2} \sin ^{2} \Delta_{31} \\
& +8 c_{13}^{2} s_{12} s_{13} s_{23}\left(c_{12} c_{23} \cos \delta-s_{12} s_{13} s_{23}\right) \cos \Delta_{32} \sin \Delta_{31} \sin \Delta_{21} \\
& -8 c_{13}^{2} c_{12} c_{23} s_{12} s_{13} s_{23} \sin \delta \sin \Delta_{32} \sin \Delta_{31} \sin \Delta_{21} \\
& +4 s_{12}^{2} c_{13}^{2}\left(c_{12} c_{23}+s_{12}^{2} s_{13}^{2} s_{23}^{2}-2 c_{12} c_{23} s_{12} s_{13} s_{23} \cos \delta\right) \sin ^{2} \Delta_{21} \\
c_{i j}=\cos \theta_{i j} \quad, \quad s_{i j}= & \sin \theta_{i j} \quad \Delta_{i j}=\Delta m_{i j}^{2} \frac{L}{4 E_{v}}
\end{aligned}
$$

$P\left(\nu_{\mu} \rightarrow v_{\mu}\right) \approx 1-\left(\cos ^{4} \theta_{13} \cdot \sin ^{2} 2 \theta_{23}+\sin ^{2} 2 \theta_{13} \cdot \sin ^{2} \theta_{23}\right) \cdot \sin ^{2} \frac{\Delta m_{32}^{2} \cdot L}{4 F}$

