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+ Neutrino Oscillations
+ WIMP Searches
+ Mass Hierarchy
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A high energy tale of the high energy tail
Highest energy particles observed
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neutrino! 

●  What made such a high energy neutrino? Astronomy source? or...?
●  Was it produced the same way we make man-made neutrino beams?  
●  We know where gamma-rays are produced in the universe, but cosmic rays?

γ ray 

human-made
(LHC)

A high energy tale of the high energy tail
Highest energy particles observed
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No pictures of inside a mine... instead a picture 
from close to the detector
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IceCube's Digital Optical Module 
(DOM)



Topologies of different event types

Through-going Track Shower

Charge Current Electron/Tau Neutrinos
All Neutral Current NeutrinosCharge Current Muon Neutrinos

Starting Track



Naoko Kurahashi Neilson, Drexel University 11

~250 people for ~40 institutions



IceCube Physics Programs
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See deeper into 
sources

Learn how gamma-rays 
are created

Learn where 
cosmic-rays are 
coming from

Neutrino Astronomy – The Dream
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Neutrino Astronomy – The Reality

Issue 1: cross section Issue 2: backgrounds

Galactic disk 
~1023cm

Cross section from Gandhi et al., Phys. Rev. D 58 (1998) 
093009

Atmosphere 
thickness 
1x106cm

Earth radius 
6x108cm

Observable universe 
~1028cm



Oscillations: νμ Disappearance
Atmospheric Neutrinos: One person's background is another person's signal

Super-long baseline experiment!

Phys. Rev. D 91, 072004 (2015)

Angle of incidence 
= baseline



Oscillations: Numu Dissapearance

Oscillations results at 10 – 100 GeV!!

Neutrino 2016, IceCube



Indirect WIMP Searches: 

Solar WIMP Results
Assume annihilation into single state
Assume annihilation cross section <σv>0 = 3 x 10-26 cm3 s-1

  JCAP 04 (2016) 022



Other things we do:

Sterile (3+1) Oscillation Searches
nu_tau Appearance
Non-Standard Interactions
Test on PMNS Unitarity

Galactic Halo WIMP Searches
Galactic Center WIMP Searches
Earth WIMP Searches
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Two Ways to Probe Neutrino 
Astrophysics

Goal: 
Resolve each spectral component in energy

Requirements: 
- Good energy proxy variable
- Good purity in data over statistical power
  (no events from component that's not fit)
- Accurate estimate of energy proxy error range
- Prior knowledge of characteristics of 
components helpful

Goal: 
Resolve sources (clusterings) in space

Requirements: 
- Good angular resolution
- Good statistical power over purity 
  (background is spatially uniform)
- Accurate estimate of angular error range
- Prior knowledge of potential source locations 
helpful

Diffuse Analyses Point Source Analyses
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Diffuse Analysis 
IceCube's discovery analysis in 2013

Science 342, 1242856 (2013) 

2010-2012 (2 years of data)

● Flux assuming E-2:
 ~1.2 x 10-8 E-2 
[/GeV/cm2/s/sr]

● Best fit spectral index: 
-2.2
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Diffuse Analysis 
IceCube's discovery analysis in 2013

  arXiv:1510.05223
2010-2014 (4 years of data)

● Flux assuming E-2:
 ~1.0 x 10-8 E-2 
[/GeV/cm2/s/sr]

● Best fit spectral index: -2.6
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Diffuse Analyses Summary

● The universe emits high energy neutrinos

● Characterization in progress, but the whole picture is 
unclear for now

Assumptions:
- one flux for whole sky
- one spectral index
- same flux for each flavor

Some tensions imply.....
Break in the spectrum?
Spatially different flux?
Not 1:1:1?

90% confidence interval comparison

arXiv:1607.08006
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Two Pronged Approach to 
Neutrino Astrophysics

Goal: 
Resolve each spectral component in energy

Requirements: 
- Good energy proxy variable
- Good purity in data over statistical power
  (no events from component that's not fit)
- Accurate estimate of energy proxy error range
- Prior knowledge of characteristics of 
components helpful

Goal: 
Resolve sources (clusterings) in space

Requirements: 
- Good angular resolution
- Good statistical power over purity 
  (background is spatially uniform)
- Accurate estimate of angular error range
- Prior knowledge of potential source locations 
helpful

Diffuse Analyses Point Source Analyses



Through-going tracks:
Collect good angular resolution events

“2008” year Old Data (40-strings detector)
~37,000 events

Equatorial coordinates



Naoko Kurahashi Neilson, Drexel University 26

Point Source Analysis 1
Search for cluster: all-sky and around known sources

All-sky search

Time-integrated unbinned search of hot spots in 7 years of data
(4-year version Astrophys.J. 796:109,2014)

No indication of sources
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Point Source Analysis 2
Test population of sources

Quasi-diffuse search (~10% of the 
sky at our angular resolution)

IceCube Collab.,  arXiv:1410.1749 (2014)

Stacking of 127 nearby bright starburst galaxies
• Within z < 0.03
• FFIR(60 micron) > 4 Jy
• Fradio(1.4 GHz) > 20 mJy

Waxman, TeVPA ‘13

Stacking of 862 Fermi 2LAC Blazars

Astrophys.J. 796:10 (,2014)

No indication of correlation → Tight limits set on source classes
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Point Source Analyses conclusion

No TeV sources in neutrinos (yet)

MeV neutrinos still lead in number of sources: 0 vs 2

super-kamiokande

kamiokande

The Sun Supernova 1987A

*No direction, just timing
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Universe emits high energy neutrinos... but 
tight limit on source category

Upper limit in 
diffuse flux

notes

Blazars ~ 17% 862 from Fermi 2nd AGN cat.
Spectral index = -2.5

Nearby Starburst Galaxies ~ 8% 127 nearby
Spectral index = -2

Galactic 
Sources

Young SNR ~ 5% 30 with no PWN or MC
Spectral index = -2

Young PWN ~ 3% 10 with no MC
Spectral index = -2

Galactic Plane ~14% Fermi Diffuse γ Spatial template
Spectral index = -2.5 to -2.7

GRBs ~1% 506 bursts observed 
Spectral index = -2 to -2.7

Astrophys.J. 796:10 (2014),  ApJ, 805, L5 (2015)  

WHAT IS EMITTING NEUTRINOS?????
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Multi-Messenger Astronomy 
(not only photons!)

Ultra-high Energy Cosmic Rays Gravity Waves

Correlation study with highest energy 
events from Auger and TA
No correlation beyond 3.3σ 

JCAP 1601 (2016) 01, 037

LIGO gravity signal and neutrino 
events within +/-500s
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How can we increase our chances 
of neutrino discoveries sooner?

Factor of 10 doesn't seem like much until you 
realize how old you are in 10 years vs 100 years!
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IceCube Gen2 – The next generation facility for 
neutrino physics and astronomy at the South Pole

 
arXiv:1412.5106
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Mass Hierarchy with PINGU

MSW effect on atmospheric neutrinos probe hierarchy
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Mass Hierarchy with PINGU

Normal Inverted

arXiv:1607.02671
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Conclusions

● IceCube has had great success so far, 
in astrophysics and particle physics

→ We are not a single purpose detector!

● Neutrino astronomy a reality
● Oscillation constraints using 

different baseline/energy
● Indirect WIMP constraints using 

neutrinos
● We keep learning, and have plans to 

get us to discovery sooner on all topics
Women Observing Stars, Ota Chou (1936)

Tokyo Modern Arts Museum
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Backups
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Oscillation with PINGU
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Rapid Communication Example: April 27 
2016
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Putting diffuse and point source together
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IceCube's Realtime Efforts
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Getting there sooner
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Historical Perspective: Gamma-ray Astronomy
Diffuse signal → first source → catalog!

SAS-2

Diffuse celestial radiation

GSFC nasa.gov

COS-B Discreet sources

1970's

1980's

NOW

GSFC nasa.gov

Fermi 5-year data
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Historical Perspective: X-ray Astronomy
Diffuse signal → first source → catalog

“The Cosmic Century” M. S. Longair

Diffuse emission and Scorpius X-1 1960's

(Sun detected in x-rays 1940's)

xte.mit.edu

APOD 8/19/2000 ROSAT
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More IceCube Jargon

40-strings (IC-40), 376 days livetime, ~50% complete
59-strings (IC-59), 348 days livetime, ~50% complete
79-strings (IC-79), 333 days livetime, almost complete
86-strings (IC-86), 329 days livetime, complete
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Diffuse Analysis 2
Updated veto to the discovery analysis

● Flux Level:~2.2 (E/100GeV)-2.5  10-8 [/GeV/cm2/s/sr] 
● Spectral index:  -2.5 

IceCube Collaboration (2015) Phys. Rev. D. 91

* This was for 2010-2012 data. Update 
to this analysis in the pipeline
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Diffuse Analysis 3
A different approach: Only look below the horizon to 

avoid atmospheric muon background

2009-2010 2010-2011 2011-2012 2011-2015

arXiv:1607.08006

● Flux Level:~ 0.9 (E/100TeV)-2.13  10-18 [/GeV/cm2/s/sr] 
● Spectral index:  -2.1



Earth
IceCube

IceCube backgrounds are  
atmospheric shower components

0

●  Most charged π/K decay to μ rather than e
●  ν produced in the same interaction, but lower cross 

section
● Most common bkg: μ > νμ > νe (Southern Hemisphere)

● νμ > νe (Northern Hemisphere)

●  At higher energy, meson lifetime is longer 
 → more interact rather than decay

● μ, ν spectra softer than primary CR's 

●  At higher energies, charmed mesons produced
●  Shorter lifetime, decay products are harder spectra than 

 π/K decay → “prompt” flux


