

# Direct Neutrino Mass Measurement with KATRIN



Sanshiro Enomoto (University of Washington) for the KATRIN Collaboration

### Neutrino Mass Measurement with Single Beta Decay

Use Kinematics only, look at the end-point shape

$$\frac{dN}{dE_e} = C \cdot F(E,Z) \cdot P_e \cdot (E_e + m_e c^2) \cdot (E_o - E_e) \sqrt{(E_o - E_e)^2 - m_{v_e}^2}$$

$$\sum_{i=1}^{i} |U_{ei}|^2 \cdot m_i^2 \sim m_i^2$$
in degenerated region
$$^{3}H \rightarrow ^{3}He + e^{-} + \overline{v}_e$$
10



## Neutrino Mass Measurement with Single Beta Decay

Use Kinematics only, look at the end-point shape

$$\frac{dN}{dE_e} = C \cdot F(E,Z) \cdot P_e \cdot (E_e + m_e c^2) \cdot (E_o - E_e) \sqrt{(E_o - E_e)^2 - (m_{v_e})^2}$$

$$\sum_{i} \left| U_{ei} \right|^2 \cdot m_i^2 \sim m_i^2$$

in degenerated region

## $^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \overline{\nu}_{e}$

<sup>3</sup>He

3H

### Tritium as beta-source

- low end-point (18.6 keV)
  - $\rightarrow$  relatively large deformation
  - $\rightarrow$  electro-statically reachable
- short life (12.3 y):
  - $\rightarrow$  small source amount
  - $\rightarrow$  less scattering in source
- super-allowed transition
  - → matrix element reliably calculable
- simplest molecular:
  - $\rightarrow$  molecular states calculable



## Neutrino Mass Measurement with Single Beta Decay

Use Kinematics only, look at the end-point shape

$$\frac{dN}{dE_e} = C \cdot F(E,Z) \cdot P_e \cdot (E_e + m_e c^2) \cdot (E_o - E_e) \sqrt{(E_o - E_e)^2 - (m_{v_e})^2}$$

$$\sum_{i} \left| U_{ei} \right|^2 \cdot m_i^2 \sim m_i^2$$

in degenerated region

## $^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \overline{\nu}_{e}$

<sup>3</sup>He

3H

### Tritium as beta-source

- low end-point (18.6 keV)
  - $\rightarrow$  relatively large deformation
  - $\rightarrow$  electro-statically reachable
- short life (12.3 y):
  - $\rightarrow$  small source amount
  - $\rightarrow$  less scattering in source
- super-allowed transition
  - → matrix element reliably calculable
- simplest molecular:
  - $\rightarrow$  molecular states calculable



only  $2 \times 10^{-13}$  of all beta in last 1 eV

### Needs:

- strong source
- high precision spectroscopy

## Electron Spectroscopy with Electro-Static Filter



 $\rightarrow$  guiding magnetic field

## Electron Spectroscopy with Electro-Static Filter



## Electron Spectroscopy with Electro-Static Filter



### MAC-E (Magnetic-Adiabatic-Collimation Electro-static) Filter



## Present Mass Limit and KATRIN Experiment







Mainz (2005, final result) m( $\nu_{e}$ ) < 2.3 eV (95%CL)



Triosk (2011, re-analysis) m( $\nu_{e}$ ) < 2.05 eV (95%CL)

#### KATRIN

design sensitivity: m( $\nu_{\rm e}$ ) < 0.2 eV (90%CL)

- 1/10 sensitivity on m<sub>e</sub>
  - $\Rightarrow$  1/100 sensitivity on m<sub>e</sub><sup>2</sup>
  - $\Rightarrow$  x100 statistics, 1/100 systematics

# KATRIN Experiment

KArlsruhe TRItium Neutrino Experiment

- located at Karlsruhe Institute of Technology, Karlsruhe, Germany
- design sensitivity:  $m(v_e) < 0.2 \text{ eV} (90\% \text{CL}, 3 \text{ years})$





# Windowless Gaseous Tritium Source



- 100 GBq Gaseous Tritium Source
- 40 g/day circulation



- 0.1% Pressure Stability
- 0.1% Temperature Stability

Cooled at 30  $\pm$  0.003 K

### Two Phase (LNe/GNe) Cooling





# Gas Composition Monitoring

### Laser Raman Spectroscopy (in embedded the tritium loop)



# **Tritium Retention**



# Tritium Retention: ion blocking and removal



# Main Spectrometer (MAC-E Filter)



• ppm-level precision retarding high-voltage (control and monitor)

# Field Shaping & EM Shielding

✓ satisfy transmission condition (adiabatic guidance, precise retarding)
 ✓ avoid penning traps



#### Inner Wire Electrodes

double-layer wire mass-less electrode

- B-field shaping
- magnetic shielding



- background removal (B-pulsing)
- geomagnetism compensation



- E-field shaping
- electric shielding



- background removal (dipole mode)
- vessel HV noise screening

# Electron Detector



<figure>

#### Post-Acceleration Electrode shifts electrons to lower background region





# Spectrometer Construction and Commissioning

#### Aug 2006









## EGun-Spectrometer-Detector Commissioning (2013~)



- MAC-E filter transmission characterization
- Background measurements
- HV stability test
- and more (alignment, active background removal, detector characterization, …)

# MAC-E Transmission Characteristics



# MAC-E Characteristics (potential penetration)



## **Time-of-flight Measurements**



Position varied







# Potential Background Source: Trapped Particles

MAC-E filter is a magnetic bottle for particles generated inside (w/ large angle)



Large-angle particles are magnetically reflected



Stored particles could be a major background source

- stay in the vessel for ~min ~hours
- ionize residual gas, generating low-energy secondary electrons
- the secondaries reach the detector, just look like signals

# Imaging the Stored Particles

by injecting Ar to increase *residual* gas (pressure:  $10^{-11}$  mbar  $\rightarrow 10^{-8}$  mbar)



# We had known the source: it's Radon, as always

#### Pumping Port



3 km of getter material (SAES St 707: Zr-V-Fe)

Total Event Rate (cps)

1.5

Cryo-Baffle is installed between NEG and Vessel





Cluster Event Rate (cps)

# Unexpected: 0.5 cps Electrons; from where?

#### Sources are in the volume (not from the wall)



#### Other observations

- Dependence on temperature, cleanness of vessel wall, and inner-wire E-field
- Not correlated to cosmic muon rates
- 30 keV and 42 keV electrons observed from the vessel wall (<sup>210</sup>Pb EC ??)

#### Our Best Hypothesis: Rydberg Hydrogen (neutral excited hydrogen atoms)

- Rn progeny <sup>210</sup>Pb are embedded in the vessel wall
- Alpha-decay of <sup>210</sup>Po (<sup>210</sup>Po progeny) somehow excites hydrogen on the wall
- Excited H\* atoms (Rydberg Hydrogen) are ionized in volume by black-body radiation

# KATRIN "First Light" (Oct 2016)









# Final Commissioning in 2017



### 2017 Commissioning Plans

- Characterization of components, completion of tritium loops
- Test/calibration with gaseous Kr source
- Test with  $D_2$  gas, then  $D_2+T_2$
- Measurement of energy-loss in source with E-Gun

# Scanning Optimization and Spectrum Fitting

### Scanning Optimization with Toy MC



M. Kleesiek

### If the 500 mcps BG cannot be removed



## KATRIN Sensitivity in case the BG cannot be removed

#### Optimization on Scanning Range



Extended Analysis Interval

- More signal
- Less "clean" part

#### Optimization on Flux Volume



Shrunk flux volume

- Reduced BG
- Worse ∆E



# Summary and Outlook

KATRIN: Model-Independent Neutrino Mass Measurement

- Only uses beta-decay kinematics
- 100 GBq gaseous tritium + 0.9 eV resolution MAC-E filter
- Design sensitivity 0.2 eV (90%CL) in 3 years

#### Status

- Main spectrometer commissioned and characterized
- "First light" last month: everything assembled
- Source section commissioning in 2017

#### FAQ: When will KATRIN start?

 $ln two years \rightarrow$  First tritium data in one year

# **KATRIN** Collaboration





- ~130 Collaborators
- 18 Institutions
- 6 Countries
  - DE, US, CZ, RU, UK, FR



# KATRIN Error Budget

(KATRIN Design Report 2004)

