

Status of the XENON1T Experiment

DBD2016 Workshop, Osaka, Japan.

Alessandro Manfredini On behalf of the XENON collaboration.

The XENON Collaboration

Alessandro Manfredini

XENON10:

- 2005-2007
- 15 cm drift
- 25kg of Xe

XENON100:

- 2008-2016
- 30 cm drift
- 161 kg of Xe of which 62kg as target

XENON1T:

- 2012-2018
- 96 cm drift
- 3200 kg of Xe of which 2 tonnes as target

XENONnT:

- ~2019-2023
- 144 cm drift
- ~8000 kg of Xe
- 6 tonnes as target

3

Alessandro Manfredini

Xe Dark Matter Detection Principle

- XENON1T is dual phase Xe TPC
- Two signals (S1, S2) for each event which allows 3D positioning
- WIMPs will produce a nuclear recoil
- Separation between electronic and nuclear recoil is achieved with the ratio between charge (S2) and scintillation (S1) signals.

Xe Dark Matter Detection Principle

Alessandro Manfredini

- XENON1T is dual phase Xe TPC
- Two signals (S1, S2) for each event which allows 3D positioning
- WIMPs will produce a nuclear recoil
- Separation between electronic and nuclear recoil is achieved with the ratio between charge (S2) and scintillation (S1) signals.

A rich science program:

- Search for dark matter: with 2 tonne year exposure we expect to be sensitive to spin independent WIMPnucleon scattering cross section of ~1.6 10⁻⁴⁷ cm²
- Not only dark matter:
 - measurement of coherent neutrino scattering is in principle possible
 - Search for two neutrino double electron capture on ¹²⁴Xe

Very low background conditions are needed:

- Overall background reduction of a factor 100 wrt XENON100
- 0.2 ppt of Kr (in 1 tonne fiducial volume)
- 10 µBq/kg of ²²²Rn (in 1 tonne fiducial volume)
- Muon induced events < 1 in 2 tonne year

- 96 cm drift x 96 cm diameter TPC has been installed at LNGS (Italy)
- Material have been chosen after an extensive radioactivity screening campaign
- 248 low radioactivity 3" PMTs
- high QE (~35%) R11410-21 (arXiv:1503.07698)
- Covered with high reflectivity PTFE

 → maximize light collection
 efficiency

Alessandro Manfredini

- The cryostat is immersed in a water shield filled with 700 tonnes of water
- Deionized water is used as passive shield from environmental radiation
- Water is constantly purified
- Equipped with 84 high-QE, 8" PMTs
- All walls are covered with reflective foil
 - Detects Cherenkov light to tag muons.
 - Expected muon flux underground is 10⁻²/m²h → reduced to an expected background of 0.01 ev/year with muon tagging (arXiv:1406.2374)
 - Fully commissioned in March 2016

Alessandro Manfredini

XENON1T: Xe Handling Systems

- The same system will be shared between XENON1T and nT
- Safety system for Recuperation and Storage of Xenon (ReStoX)
- Constant Xe purification with two getters working in parallel
- Online Kr distillation, no need to empty detector.
- Status: the Xe handling system is commissioned and fully operational.

Two possible calibration methods:

Via external sources moved on a system of belts and winches.

Via "internal" sources, i.e. injected as gas after the purification system

- Two tungsten collimator can house exchangeable sources.
- Possibility for a third collimator to satisfy future requirements.
- A deuterium fusion neutron generator which produces 2.5 MeV neutrons can be immersed in water.
- XENON1T is expected to be able to identify neutron double scatter → measure of Leff, Qy. As done already by LUX (arXiv:1608.05381)
- Data taken with following sources: Cs¹³⁷ and AmBe, expected Th²³²

Xe Internal Calibration System

- Radioactive isotopes are mixed directly into the xenon recirculation system
- Three different sources have been selected:
 - ^{83m}Kr for energy scale calibration
 - ²²⁰Rn as a probe of Rn emanation background and to low energy electronic recoil.
 - Tritiated methane for low energy ER. Long lifetime, need to be removed by purification system afterwards
 - XENON1T data already taken with ^{83m}Kr and ²²⁰Rn

- Detector filled with 3.2 tonnes since April
- The TPC is fully active
- Water shield filled in July
- Factor 2 improved light yield wrt XENON100 (from Kr calibration data)
- Electron lifetime monotonically increasing!
- Current status: detector calibration with neutrons, data taking.

Operation Summary: Internal Calibration^{83m}Kr

- In August performed the first ^{83m}Kr calibration
- ^{83m}Kr undergoes two subsequent decays via electron conversion.
- Emits electrons with energies of 32 and 9 KeV
- The halflife of the second decay is 154ns.
- Useful for low energy calibration and light collection efficiency maps.
- Plan to get regular ^{83m}Kr calibration data.

Operation Summary: Internal Calibration²²⁰**Rn**

- Proof of concept on XENON100 (arXiv:1602.01138)
- XENON1T data were taken recently in October.
- ²²⁰Rn emanated from a ²²⁸Th source
- No long lived isotopes → cleaning achievable in a week
- Probe for $^{222}Rn,$ ER spectrum with β from ^{212}Po
- Measure of convection possible with Rn-Po decay.

Xe Expected Backgrounds

- Total Electronic Recoil (ER) background expected for 1T fiducial volume is 1.8·10⁻⁴ (kg·day·KeV)⁻¹ (*JCAP04*(2016)027)
- Total Nuclear Recoil background in the region of interest is 0.6 (tonne·year)⁻¹
- ²²²Rn is the dominant contribution for ER, while is radiogenic neutrons for NR.
- It assumes: 10 μ Bq/kg of 222 Rn and 0.2 ppt of nat Kr

Alessandro Manfredini

Xe Background Analysis: ²²²Rn

- ²²²Rn is expected to be the dominant ER background.
- A preliminary analysis that identifies α decays reports a concentration compatible with what expected from MC prediction using material screening data.

Xe XENON1T Expected Sensitivity

Assuming the LUX (arXiv:1608.05381) LXe emission model and a 2T·year exposure, the expected sensitivity for spin-independent WIMP-nucleon scattering of a 50 GeV WIMP mass is $1.6 \ 10^{-47} \ cm^2$.

Summary of Current Status and Next Steps

- Detector and all system in regular operation phase, all performing well
- Light yield and charge yield keep improving with purification
- Background estimation compatible with design goals.
- Detector under calibration with neutrons.
- Kr removal via distillation is expected to start soon.
- Dark matter science run after Kr removal.
- Will reach the current best experimental sensitivity to WIMP in about ~30 days

- XENON1T is envisioned to be upgraded to XENONnT with minimal interventions
- A new TPC and new cryostat vessel will be necessary, all other systems will receive minor upgrades.
- Additional PMTs: $248 \rightarrow 476$
- A larger total LXe mass of ~8 tonnes
- 6 tonne target, an increase of a factor x3!
- Installation late 2018.

Screening campaign

m	Component	Material	Quantity	Unit	Contamination [mBq/unit]							
					$^{238}\mathrm{U}$	$^{235}\mathrm{U}$	226 Ra	232 Th	228 Th	60 Co	40 K	^{137}Cs
1	Cryostat Shells	SS	870	kg	2.4 ± 0.7	$(1.1\pm 0.3)\cdot 10^{-1}$	$< 6.4\cdot 10^{-1}$	$(2.1 \pm 0.6) \cdot 10^{-1}$	$< 3.6\cdot 10^{-1}$	9.7 ± 0.8	< 2.7	< 6.4 \ 10^{-1}
2	Cryostat Flanges	SS	560	kg	1.4 ± 0.4	$(6\pm2)\cdot10^{-2}$	< 4.0	$(2.1 \pm 0.6) \cdot 10^{-1}$	4.5 ± 0.6	37.3 ± 0.9	< 5.6	< 1.5
3	Reservoir	SS	90	kg	11 ± 3	$(5\pm2)\cdot10^{-1}$	1.2 ± 0.3	1.2 ± 0.4	2.0 ± 0.4	5.5 ± 0.5	< 1.3	< 5.8, 10-1
4	TPC Panels $^{(1)}$	PTFE	92	kg	$<2.5\cdot10^{-1}$	$< 1.1\cdot 10^{-2}$	$< 1.2 \cdot 10^{-1}$	$< 4.1\cdot 10^{-2}$	$< 6.5 \cdot 10^{-2}$	$< 2.7 \cdot 10^{-2}$	$< 3.4 \cdot 10^{-1}$	(1.7 ± 0.2) 10 ⁻¹
5	TPC Plates ⁽²⁾	Cu	184	kg	< 1.2	$< 5.5\cdot 10^{-1}$	$< 3.3\cdot 10^{-2}$	$<4.3\cdot10^{-2}$	$< 3.4\cdot 10^{-2}$	0.10 ± 0.01	< 2.8 . 10 ⁻¹	$(1.7 \pm 0.3) \cdot 10^{-2}$
6	Bell and Rings $^{(3)}$	SS	80	kg	2.4 ± 0.7	$(1.1\pm 0.3)\cdot 10^{-1}$	$< 6.4\cdot 10^{-1}$	$(2.1 \pm 0.6) \cdot 10^{-1}$	$< 3.6 \cdot 10^{-1}$	9.7 ± 0.8	< 2.0 10	< 6.4 10-1
7	PMT Stem	Al_2O_3	248	PMT	2.4 ± 0.4	$(1.1\pm 0.2)\cdot 10^{-1}$	$(2.6\pm 0.2)\cdot 10^{-1}$	$(2.3 \pm 0.3) \cdot 10^{-1}$	$(1.1 \pm 0.2) \cdot 10^{-1}$	$< 1.8 \cdot 10^{-2}$	11+02	< 0.4 · 10
8	PMT Window	Quartz	248	$\rm PMT$	< 1.2	$<2.4\cdot10^{-2}$	$(6.5 \pm 0.7) \cdot 10^{-2}$	$< 2.9\cdot 10^{-2}$	$< 2.5 \cdot 10^{-2}$	$< 6.7 \cdot 10^{-3}$	1.1 ± 0.2	< 2.2 · 10 *
9	PMT SS	SS	248	PMT	$(2.6\pm 0.8)\cdot 10^{-1}$	$(1.1\pm 0.4)\cdot 10^{-2}$	$< 6.5\cdot 10^{-2}$	$< 3.9\cdot 10^{-2}$	$< 5.0 \cdot 10^{-2}$	$(8.0 \pm 0.7), 10^{-2}$	< 1.6 10=1	< 0.8 · 10 ⁻³
10	PMT Body	Kovar	248	PMT	$< 1.4\cdot 10^{-1}$	$< 6.4\cdot 10^{-3}$	$< 3.1\cdot 10^{-1}$	$< 4.9 \cdot 10^{-2}$	$< 3.7 \cdot 10^{-1}$	$(3.0 \pm 0.1) \cdot 10^{-1}$	< 1.0 · 10 ·	< 1.9 · 10 ⁻²
11	PMT Bases	Cirlex	248	PMT	$(8.2\pm 0.3)\cdot 10^{-1}$	$(7.1 \pm 1.6) \cdot 10^{-2}$	$(3.2 \pm 0.2) \cdot 10^{-1}$	$(2.0 \pm 0.3) \cdot 10^{-1}$	$(1.53 \pm 0.13) \cdot 10^{-1}$	$(5.2 \pm 0.3) \cdot 10^{-3}$	< 1.1	$< 1.2 \cdot 10^{-1}$
12	Whole PMT	÷	248	PMT	8 ± 2	$(3.6\pm 0.8)\cdot 10^{-1}$	$(5\pm1)\cdot10^{-1}$	$(5 \pm 1) \cdot 10^{-1}$	$(5.0 \pm 0.6) \cdot 10^{-1}$	$< 5.2 \cdot 10^{-5}$ $(7.1 \pm 0.3) \cdot 10^{-1}$	$(3.0 \pm 0.8) \cdot 10^{-1}$ 13 + 2	$< 9.8 \cdot 10^{-3}$

Table 1. Summary of the contaminations of the materials considered in the XENON1T Monte Carlo simulation.

⁽¹⁾ includes all the PTFE components present in the TPC walls, rings and pillars, the plates of the two support structures of the PMTs, and a trapezoidal section ring on top of the TPC;

 $\binom{(2)}{(2)}$ field shaping rings and support structure of the two PMT arrays;

⁽³⁾ top and lateral part of the bell; support rings of the five electrodes.

Calibrating XENON1T

- XENON1T is designed to reduce external background → difficult to calibrate with external source. However external sources are more versatile.
- Using known sources one can combine S1 and S2 obtaining a "combined energy scale" probe for energy deposition.
- Calibration sources are used to evaluate detector response to WIMP: the light yield (Ly), charge yield (Y), light collection efficiency, Leff and Qy (to translate response to nuclear recoil).
- Electronic recoil and nuclear recoil spectrum can be obtained with sources.