

Dark Matter: LUX and LZ

HNN

Harry Nelson / LUX, LZ & UCSB DBD16 at Osaka November 10, 2016

T 1	
н	
11	LN

Xenon

- Dense Liquid
- Natural Scintillator
- Long lived radioisotopes are 2vββ decays, very long half lives
- 9 `stable' isotopes

10 Nov. 2016

2 with unpaired neutron

	AZ	$\tau_{1/2}$ or f	Jp
	¹²² Xe	20 h	0+
	¹²³ Xe	2.1 h	$(1/2)^+$
ator	¹²⁴ Xe	0.10 %	0+
	¹²⁵ Xe	17 h	$(1/2)^+$
nisotones	¹²⁶ Xe	0.09 %	0+
	¹²⁷ Xe	36 d	(1/2)+
s, very long	¹²⁸ Xe	1.91 %	0+
	¹²⁹ Xe	26.4 %	(1/2)+
	¹³⁰ Xe	4.1 %	0+
es	¹³¹ Xe	21.2 %	(3/2)+
	¹³² Xe	26.9 %	0+
neutron	¹³³ Xe	5.2 d	(3/2)+
	¹³⁴ Xe	10.4 %	0+
	¹³⁵ Xe	9.1 h	(3/2)+
DBD16 - Osaka	¹³⁶ Xe	8.9 % (2.2×10 ²¹ y)	0+

HNN Signal: Nuclear Recoils (NR) from WIMPs

10 Nov. 2016

Lead, South Dakota

Sanford Underground Research Facility

LUX/LZ Here

10 Nov. 2016

LUX in Santa Barbara

The

Berkeley Lab / UC Berkeley				
Bob Jacobsen	PI, Professor			
Murdock Gilchriese	Senior Scientist			
Kevin Lesko	Senior Scientist			
Michael Witherell	Lab Director			
Peter Sorensen	Scientist			
Simon Fiorucci	Project Scientist			
Attila Dobi	Postdoc			
Daniel Hogan	Graduate Student			
Kate Kamdin	Graduate Student			
Kelsey Oliver-Mallory	Graduate Student			

🗖 BROWN

Richard Gaitske
Samuel Chung
Dongqing Huang
Casey Rhyne
Will Taylor
Jamoe Vorbue

-

James Verbus Alex Murphy PI. Professor

Paolo Beltrame	Research
Tom Davison	Graduate
Maria F. Marzioni	Graduate
Imperial College London	Imperial Col London, UK

Henrique Araujo Tim Sumner Alastair Currie Adam Bailey

Khadeeja Yazdani

	Postdoc	
	Graduate	Stude
	Graduate	Stude
Mallory	Graduate	Stude

Brown Universitv

PI, Professor	
Graduate Student	
Postdoc	

University of Edinburgh, UK

	,	
Э	Research Fellow	
	Graduate Student	
oni	Graduate Student	
ge	Imperial College	

PI. Reader

Professor

Graduate Student

Postdoc

Graduate Student

David Tavlor Markus Horn Dana Byram

Wei Ji

Lawrence Livermore

Adam I

Kareer

Jingke

Brian L

Bernstein	PI, Leader of Adv Detectors Grp.
n Kazkaz	Staff Physicist
Xu	Postdoc
enardo	Graduate Studen

4 LIP Coimbra, Portugal

PI, Professor Isabel Lopes Jose Pinto da Assistant Professor Vladimir Solovov Senior Researcher Francisco Neves **Auxiliary Researcher** Alexander Lindote Postdoc Claudio Silva Postdoc Paulo Bras Graduate Student

SLAC Stanford (CWRU)

Dan Akerib PI. Professor PI, Professor Thomas Shutt Tomasz Biesiadzinski Research Associate Christina Ignarra Research Associate Wing To **Research Associate Rosie Bramante** Graduate Student Graduate Student T.J. Whitis Graduate Student

SD Mines

SDSTA / Sanford Lab

Project Engineer Research Scientist Support Scientist

University at Albany

LOX collaboration

PI, Professor Matthew Szydagis Jeremy Mock Postdoc Sean Fallon Jack Genovesi Steven Young

ĀМ Texas A&M University

James White † Robert Webb Rachel Mannino Paul Terman

BerkeleyUC Berkeley (Yale)

Daniel McKinsey	PI, Pr
Ethan Bernard	Projec
Scott Hertel	Postd
Kevin O'Sullivan	Postd
Elizabeth Boulton	Gradu
Evan Pease	Gradu
Brian Tennyson	Gradu
Lucie Tvrznikova	Gradu
Nicole Larsen	Gradu

DAVIS UC Davis

Mani Tripathi	PI, Profess
Britt Hollbrook	Senior Eng
John Thomson	Developme
Dave Hemer	Senior Mad
Ray Gerhard	Electronics
Aaron Manalaysay	Project Sci
Jacob Cutter	Graduate S
James Morad	Graduate S
Sergey Uvarov	Graduate S

Graduate Student Graduate Student Graduate Student

PI. Professor PI. Professor Graduate Student Graduate Student

ofessor t Scientist oc ос ate Student ate Student ate Student ate Student ate Student

or ineer ent chinist Engineer entist Student Student Student

UCSB UC Santa Barbara

Harry Nelson Susanne Kyre Dean White Carmen Carmona Scott Haselschwardt Curt Nehrkorn

Melih Solmaz

Chao Zhang

Engineer Postdoc Graduate Student Graduate Student Graduate Student

PI. Professor

Engineer

University College London, UK Chamkaur Ghag PI, Lecturer James Dobson Postdoc Sally Shaw Graduate Student University of Maryland Carter Hall PI. Professor Jon Balaithy Graduate Student Richard Knoche Graduate Student University of Rochester ROCHESTER. Frank Wolfs PI, Professor Senior Scientist Wojtek Skutski Ervk Druszkiewicz Graduate Student Dev Ashish Khaitan Graduate Student Diktat Koyuncu Graduate Student M. Moongweluwan Graduate Student Jun Yin Graduate Student University of South Dakota Dongming Mei

PI, Professor

Postdoc

University of Wisconsin Kimberly Palladino PI. Asst Professor Shaun Alsum Graduate Student

LUX Installed (Fall 2012)

10 Nov. 2016

In the tank and detailed cross section

LUX/LZ

LUX/LZ

Typical Event in LUX

10 Nov. 2016

LUX WIMP Search Data Guide

- WS2013 run: 95 live days
 - First result, published 2014
 - Improved with calibrations: published 2016
 Low mass WIMPs
- WS2014-16 run: 332 live days
 - Calibrate drifts in the detector
 - Raw data here
- Show combined limit curve

LUX/LZ

LZ = LUX + ZEPLIN

37 Institutions, 217 People

Black Hills State University Brookhaven National Laboratory (BNL) Brown University Fermi National Accelerator Laboratory (FNAL) Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) Lawrence Berkeley National Laboratory (LBNL) Lawrence Livermore National Laboratory (LLNL) Northwestern University Pennsylvania State University **SLAC National Accelerator Laboratory** South Dakota School of Mines and Technology South Dakota Science and Technology Authority (SDSTA) STFC Rutherford Appleton Laboratory (RAL) Texas A&M University University at Albany (SUNY) University of Alabama University of California (UC), Berkeley University of California (UC), Davis University of California (UC), Santa Barbara **University of Maryland University of Massachusetts**

10 Nov. 2016

DBD16 - Osaka

University of Michigan University of Rochester University of South Dakota University of Wisconsin-Madison Washington University in St. Louis Yale University

LUX/LZ

At Oxford, August 2016

10 Nov. 2016

$\frac{1}{LZ 7 t LXe active - fits in LUX Water Tank}$

LZ

Passed DOE CD-1, CD-2, partially CD-3;

Complete CD-3 expected Jan. `17

Operations: Apr. `20

Impact of the Outer Detector

HNN

NR Background Tallies – 1000 days, 5.6 t

- ⁸B Nuclear Recoils like 6 GeV WIMP
 - Sensitive to low threshold detector response
 - ► \approx 7 (baseline) to \approx 300 (goal)
- Other nuclear recoils
 - ~0.5 nearby material, strong spatial dependence
 □ dominant: dust!
 - ~0.7 due to neutrinos, uniform in LXe
 dominant: atmospheric

LUX/LZ

ER Background Tallies – 1000 days, 5.6 t

- pp solar ≈ 255
- ¹³⁶Xe $2\nu\beta\beta \approx 67$ (very low energy)
- Nearby material ≈ 11 (strong spatial dependence in LXe)
- Internal Radioactive Gases, uniform in LXe
 72 (goal) to ≈1000 (baseline)
 Dominantly ²²²Radon emanation
 Vigorous screening program

LUX/LZ

10 Nov. 2016

DBD16 - Osaka

10 Nov. 2016

DBD16 - Osaka

$\frac{136 \text{Xe } 0\nu\beta\beta - 1000 \text{ days, } 5.6 \text{ t in } \text{LZ}}{1000 \text{ days, } 5.6 \text{ t in } \text{LZ}}$

- Challenges
 - Experiment optimized for 1.5-10 keV_{ee}
 - ► More shielding of ²⁰⁸Tl, ²¹⁴Pb gammas needed
 - Power of spatial shape, Bragg ID, etc..
- Preliminary estimates... \approx 1t fiducial
 - Unenriched... $\approx 10^{26}$ y
 - ► 90% 136 Xe... $\approx 10^{27}$ y
- If a WIMP signal emerges, change the isotopic abundance Xe target, to understand WIMP interaction with nuclei

Summary

- 2-phase liquid xenon TPCs push the frontier of WIMP sensitivity, and LUX led the way for a few years
- LUX has substantially advanced the art of calibration
- LZ will operate in April 2020 and is projected to achieve best spin independent sensitivity better than 3×10⁻⁴⁸cm², and start to see irreducible neutrino background

LUX/LZ

THANKS!

Astrophysics...84.5% of the matter in the universe is different than us.

Weakly Interacting Massive Particle (WIMP)

Planck

Comparison of Nobles

Element	A (nat)	• Atm (ppmv)	bp (K)	Sc. E. (eV)	Density (gm/cm ³)	Comments
Helium	4.00	5.2	4.2	16	0.13	Great Pulse Shape Disc
Neon	20.2	18	27	16	1.2	"
Argon	39.9	9300	87	9.8	1.4	"
Krypton	83.8	1.1	121	8.3	2.4	⁸⁵ Kr (Reactors)
Xenon	131.3	0.09	165	7.1	3.1	Lower energy scint/lumi
Radon	≈222	10 ⁻¹⁹	211		4.4	Emanation afflicts above

LUX being built

10 Nov. 2016

Discrimination – detector's ability to distinguish these

LUX/LZ

Solution: Time / Space Bins

10 Nov. 2016

HNN

SD Exclusion

NOTE: This is still the old run. Still needs to be updated with the 1 year's worth of new data

Xenon is the *best* element for neutron coupling (while fluorine is best for protons)

Fiducial Mass Fraction

Experiment	Active Mass (kg)	Fiducial Mass (kg)	F/A (%)	Best Sensitivity (cm ²)	Livetime (y)	Year
Xenon 10	13.9	5.4	39	4.5×10 ⁻⁴⁴	0.16	2008
Zeplin III	12.6	5.6	44	4×10 ⁻⁴⁴	0.73	2012
Xenon 100	66	34	51	2×10 ⁻⁴⁵	0.61	2013
LUX	248	118	48	7.6×10 ⁻⁴⁶	0.26	2015
LUX	248	100	40	2×10 ⁻⁴⁶	0.90	2016
DEAP-3600	3600	1000	28	1×10 ⁻⁴⁶	3	2017
Xenon 1T	2000	1160	58	2×10 ⁻⁴⁷	2	2018
LZ	7000	5600	<u>80</u>	3×10 ⁻⁴⁸	3	2021

Fiducial mass fraction: from ≈50% to ≈80%

In case of a suspected signal, the Outer Detector provides cross checks on backgrounds

LUX/LZ

Backgrounds (5.6 t, 1000 live-days) (I)

Source	ER	NR
Atmospheric neutrinos	-	0.5
HEP solar neutrinos	-	0.2
Diffuse solar neutrinos	-	0.05
pp+7Be+13N solar neutrinos		
136 Xe $2\nu\beta\beta$	67	
Subtotal Physics (Uniform in LXe fiducial)	322	0.7

10 Nov. 2016 DBD16 - Osaka		46
Subtotal	333	1.2
Subtotal External Backgrounds (Non-Uniform in LXe fiducial)	11	0.5
20 other components	3 (27%)	0.05 (10%)
Cryostat Vessel	0.6	0.01
PMT Cabling	1.4	-
R11410 3" PMTs	1.5	0.01
Laboratory Walls, Cosmogenics	4.3	0.07
Fixed Internal Surface Contamination	0.2	0.4

ТТ		Γ.
_		

LUX/LZ

Backgrounds (5.6 t, 1000 live-days) (II)

Source	ER	NR	
Subtotal Previous Page	333	1.2	
	ER (Baseline / Goal)		
222 Radon – (2 / 0.1) µBq/kg	722	/ 36	
^{nat} Krypton (0.075 / 0.015) ppt g/g	125 / 25		
$^{220}Radon$ aka Thoron – (0.1 / 0.005) $\mu Bq/kg$	122 / 6		
$^{210}Bismuth$ (0.1 / 0.005) $\mu Bq/kg$	40 / 2		
^{nat} Argon (0.45) ppb g/g	2.5		
Subtotal Internal Backgrounds (Uniform in LXe fiducial)	1012 / 72		
Total	1344 / 405	1.2	
Efficiency below median of NR band	0.005	0.5	
Total below median of NR band	6.7 / 2	0.6	

LUX/LZ

Radon Budget Estimate (Preliminary)

- To aid planning of assay schedule, identify areas likely to need mitigation
 - Added Xe gas mitigation system to reduce by 90%
- Estimates based on most comparable measurements
 - Some upper limits
 - Measured at room temperature but most cold * in LZ
 - Corrected only (conservatively) for capacitors, PMT cabling
- Dust

HNN

- Total 18.3 mBq
 - On track to achieve requirements

~ ~ .							
	Material	Component(s)	Quantity	Unit	Réquire- ment (mBq)	Estimato (mBq)	Screening Quantity
	Al ₂ O ₂ resistor	PMT Bases	9790	#	0.66	0.86*	3,650
	BaTiO ₃ capacitor	PMT Bases	3010	#	0.66	0.015*	100,000
	Cirlex	PMT Bases	6000	cm ²	0.11	0.45*	668
	Titanium	Cryostat, PMT Mounts, Field Rings, Grid Supports	412,000	cm ²	1.70	0.41	550
	PTFE	Reflectors, HV Umbilical	840,000	cm ²	0.66	<1.3*	205,000
7	PMT Cabling	PMT Cabling	17,000	m	0.55	0.09	3,000
	PMT Feedthrough [†]	PMT HV Flange	122	#	0.11	0.49	5
	PMT Feedthrough [†]	Signal Flange	88	#	0.11	< 0.24	5
	Steel Conduit	Cabling Conduit	100,000	cm ²	0.22	0.055	100,000
1	R11410 PMT	R11410 PMT	488	#	1.10	1.26	488
1	R8520 PMT	R8520 PMT	180	#_	0.55	0.30	180
	Polyethylene	HV Umbilical	4200	cm ²	0.11	0.10	42,000
	Tin-coated copper	HV Umbilical	11,000	cm ²	0.11	0.002	110,000
	Tivar	HV Umbilical	3894	cm ²	0.22	0.004*	20,000
	Acetal	HV Umbilical	195	cm ²	0.11	0.0002*	2000
	Copper	HV Umbilical	39	cm ²	0.11	0.000007	400
	Epaxy	HV Umbilical	1000	cm ²	0.11	0.0001*	10,000
	Steel	Cryostat Seals, Xe Recirculation	135,000	cm ²	0.77	0.104	135,000
	Recirculation Pump	Xe Recirculation	1	#	0.22	0.1	1
	Purification Getter	Xe Recirculation	2.5	kg	1.10	1.34	2.5
	Transducers & Valves	Xe Recirculation	30	#	0.44	0.17	30
	Welds	Recirculation System, Cryostat	32.3	m	0.22	0.58	18.3
	Dust				10.0	10.0	
	Total				20.0	18.3	

10 Nov. 2016

HNN

LUX/LZ

Axions (LUX 95 days, and LZ)

