

Dark Matter Search in XMASS

DBD'16 in Osaka 10th Nov. 2016 Kazufumi Sato (ICRR, Univ. of Tokyo)

XMASS project

XMASS: a multi purpose experiment with liquid Xenon

- Xenon detector for Weakly Interacting MASSive Particles (DM search)
- Xenon MASSive detector for Solar neutrino (pp/7Be solar v)
- Xenon neutrino MASS detector (ββ decay)

XMASS project

XMASS: a multi purpose experiment with liquid Xenon

- Xenon detector for Weakly Interacting MASSive Particles (DM search)
- Xenon MASSive detector for Solar neutrino (pp//Be solar v)
- Xenon neutrino MASS detector (ββ decay)

the main purpose of the first phase is DM search

Kamioka Observatory

The site of Kamioka mine

• 1000 m underground = **2700 m.w.e**

m a s s
Dark Matter Search

collaborators

U of Tokyo, ICRR	K.Abe, K,Hiraide, K. Ichimura, Y. Kishimoto, K. Kobayashi M. Kobayashi, S. Moriyama, M. Nakahata, T. Norita H. Ogawa, K. Sato, H. Sekiya, O. Takachio, S. Tasaka, A.Takeda, M. Yamashita, B. Yang	
U of Tokyo, IPMU Kavli	K.Martens, Y. Suzuki, B. Xu	
Kobe Univ.	R. Fujita, K.Hosokawa, K. Miuchi, N. Oka, Y.Takeuchi	
Tokai Univ.	M. Miyasaka, K. Nishijima	
Tokushima Univ.	K. Fushimi, G. Kanzaki	
Yokohama National Univ.	S.Nakamura	
Miyagi Univ. of Education	Y.Fukuda	
Nagoya Univ.	Y. Itow, K. Kanzawa, R. Kegasa, K. Masuda, H. Takiya	
IBS	N.Y. Kim, Y.D. Kim	
KRISS	Y.H. Kim, M.K. Lee, K.B. Lee, J.S.Lee	

10 institutes, ~40 participants

spread over the inner surface

CONT. Inner Detector (Liquid Xenon detector)

- single-phase detector
 - = scintillation (S1) only \rightarrow compact, scalability
- 832 kg LXe sensitive volume
- 642 2-inch PMTs
 - HAMAMATSU R10789
 - QE: 28~39%
 - Hexagonal window
 - held by OFHC Cu holder
 - photo. coverage > 62%
- High light yield
 - ~15 p.e / keV

Self-shielding

- γ's from RI's in PMTs & vessel are **shielded by LXe itself.**
- vertex position is reconstructed from a pattern of p.e. distribution

$$L(\vec{r}) = \prod_{i=1}^{642} p_i(n_i)$$

p_i (*n*): probability that *n* p.e. are detected in the *i*-th PMT

 \rightarrow require $|\vec{r}| < 20 \text{cm}$ (= fiducial volume : 100 kg)

BG rate for DM search

BG rate including e/γ events

Original figure taken from D. C. Mailing, Ph.D (2014) Fig 1.5 With fiducial volume cut ...

- O(10⁻⁴) events/day/keV/kg at a few 10s keV
 - including e/γ events
 - \rightarrow widely explore
 - **various DM candidates with e/γ**, as well as standard WIMPs

Status of XMASS

physics results

latest result : annual modulation

- event rate of DM should modulate annually
- DAMA/LIBRA claims modulation at 9.3σ
 - 1.33 ton-year exposure
 - No particle ID (= including electron signals)

- → inspect the modulation with XMASS data
 - comparable exposure time (0.83 ton-year)
 - No particle ID

June

December

galactic plane

V₀:

Model assumption

Lewin, Smith (1996)

220.0 km/s

650.0 km/s

0.3 GeV/cm³

WIMP Wind

Cygnus

220km/s

60[°]

event selection

Data : Nov. 2013 - Mar. 2015 after the refurbishment = **359.2 live days, 0.83 ton-year exposure**

- use LXe full volume
- E thre. ~ 1.1 keVee

— — — : cuts to reject noises and after-pulses

- : after Cherenkov events rejection
 - # hits in 20 ns < 60 % of total hits
- : after rejecting events IFO PMT
 - cut by max p.e. / total p.e

efficiency after the selection

Modulation Analysis

- The data was divided into ...
 - ~10 days time-bin \otimes 0.5 keV_{ee} energy-bin

- Perform two least square fitting methods
 - all the time-energy bins are fitted simultaneously

Method 1: "pull term"

$$\chi^{2} = \sum_{i}^{E_{bins}} \sum_{j}^{t_{bins}} \left(\frac{(R_{i,j}^{data} - R_{i,j}^{ex} - \alpha K_{i,j})^{2}}{\sigma (\operatorname{stat})_{i,j}^{2} + \sigma (\operatorname{sys})_{i,j}^{2}} \right) + \alpha^{2}$$

Method 2: "covariance matrix"

$$\chi^{2} = \sum_{k,l}^{N_{\text{bins}}} (R_{k}^{\text{data}} - R_{k}^{\text{ex}})(V_{\text{stat}} + V_{\text{sys}})_{kl}^{-1} (R_{l}^{\text{data}} - R_{l}^{\text{ex}})$$

model-independent result Not assuming any specific DM model

No significant modulated signal was observed.

analysis update

modulation analysis using Run2 (2015 Apr~) is ongoing.

to the power failure

• 1.1 keV_{ee} -> ~0.5 keV_{ee}

purification

replace PMT & PMT holders only → don't change 1.5 schedule

introduce new techniques

- FV : 500kg
- BG rate : 10-5 evt/day/keV/kg

MaxNPE3

MC for 210Pb on the Cu surface

- Surface BG is identified by the maximum p.e. in 3 (or 4~5) adjoint PMTs (= MaxNPE3)
- MaxNPE3 performance was checked by MC
 - configuration of XMASS-1+
 - generate $2 \times 10^{6} 2^{10}$ Pb's from the surface of the Cu holder
 - ²¹⁰Pb on Cu surface in XMASS-I : 0.24 mBq / detector
 - MC stat : ~ 100 years data

identification by MaxNPE3

MaxNPE3 of ²¹⁰Pb on Cu surface

PMT screening

[%] 150 • PMT AI seal is replaced to pure AI RI screening for other PMT parts is also ongoing₄₀ • using Ge, GKMS, CPMS 12 ~1/8 [mBg/PMT] 10 ←current achtevement 1 8 of RI reduction 100 ~1/6 ~1/3 ~1/3 6 90 4 80 2 50 so far 1/3~1/8 reduction was ach ever 項点に対する relat 0 60Co **U-chain Th-chain 40K** 10-15PE程度の高光量レ · 縁でも高い収集効率(~80 10 reduction 検出器での表面事象識別能: **new PMT current PMT(R10789)** Goal: ~1 compared to the Guirant, 0.0567 478 0.478 0.62

background rate

Original figure taken from D. C. Mailing, Ph.D (2014) Fig 1.5

* pp solar v is one of the physics targets in XMASS1.5.
We will be able to detect a few counts/day

sensitivity

Nuclear recoil

COUPP (2012)

ZEPLIN-III (2012)

ASS-1

XMASS-1+

SIMPLE (2012)

Atmospheric and DSNB Neutrinos

1000

XMASS 1.5

WIMP

 10^{-39}

 10^{-40}

 10^{-41}

 10^{-42}

 10^{-43}

10⁻⁴⁴

10-45

 10^{-46}

10⁻⁴⁷

 10^{-48}

 10^{-49}

 10^{-50}

WIMP-nucleon cross section [cm²]

- σ_{SI} : 1~3 x 10⁻⁴⁷ cm² @ 50GeV [FV 3ton, 3~5 years, (1~0.6) x 10⁻⁵ evt/keV/day/kg]
- high sensitivity for e/y detection

SuperCDMS Soudan CDMS-lite

⁸B

Neutrinos

PICO250

SNOL

Violet oval) Magnetic DM

MSSM: Pure Higgsing

MSSM: A funnel

(Blue oval) Extra dimensions Red circle) SUSY MSSM

MSSM: Bino-stop coannihilation

Neutrinos

XENON 10 S2 (2013)

SuperCDMS Soudan Low Threshold

Ge Low Threshold (2011

CoGeNT

CDMS Si

DAM

(2013)

2012)

WIMP_Mass[GeV/c²]

100 10 WIMP Mass $[GeV/c^2]$

Summary

DM search in XMASS

- a single-phase liquid Xenon detector
 - Scalability
 - WIMP search with large target volume
 - 835 kg (current) -> 6 ton (future XMASS1.5)
 - Sensitive to e/γ as well as nuclear recoil
 - explore non-WIMP DM candidates
- Annual modulation search
 - recently published in Phys. Lett. B (2016) 272
 - Almost exclude DAMA/LIBRA allowed region
- Future plan : XMASS1.5
 - Full volume: 5 ton, Fiducial volume: ~3 ton
 - install new Dome PMT
 - BG rate: ~10⁻⁵ dru
 - sensitivity: $\sigma \sim (1-3)x10^{-47} \text{ cm}^2 @ 50 \text{GeV WIMP}$
 - demonstrated in XMASS1+