

The SuperNEMO project, and final results from NEMO-3

DBD-18, Hawai'i, October 21-23, 2018

Cheryl Patrick, University College London, for the SuperNEMO collaboration

The SuperNEMO demonstrator...

http://supernemo.org

The SuperNEMO demonstrator...

...at the LSM underground lab in France...

http://supernemo.org

The SuperNEMO demonstrator...

...at the LSM underground lab in France...

...builds on the successful NEMO-3 trackercalorimeter architecture...

http://supernemo.org

The SuperNEMO demonstrator...

...at the LSM underground lab in France...

... to probe the underlying mechanisms of $\beta\beta$ decay.

...builds on the successful NEMO-3 trackercalorimeter architecture...

http://supernemo.org

The SuperNEMO demonstrator...

... to probe the underlying mechanisms of $\beta\beta$ decay.

It serves as a proof of concept for future world-class isotopeagnostic detectors

...at the LSM underground lab in France...

...builds on the successful NEMO-3 trackercalorimeter architecture...

The SuperNEMO demonstrator...

... to probe the underlying mechanisms of $\beta\beta$ decay.

It serves as a proof of concept for future world-class isotopeagnostic detectors

...at the LSM underground lab in France...

...builds on the successful NEMO-3 trackercalorimeter architecture...

...and expects first data in the next few months!

LSM - the home of SuperNEMO

Cheryl Patrick, UCL

The NEMO principle

Strengths

- Source decoupled from detector use any solid ββ source isotope
- Track reconstruction gives **particle identification**
- Combine with timings to identify topologies for ultra-high background rejection
- Tracking info (angle between tracks) & individual energy distributions can distinguish between *ββ* mechanisms
- **Scalable** with multiple modules

Weaknesses

- **Energy resolution** poorer than for most homogenous detectors
- Harder to achieve world-leading **0vββ half-life sensitivity** than with some other designs

NEMO-3 (2003-2011)

• $2\nu\beta\beta$ measurements and $0\nu\beta\beta$ limits for several isotopes 100Mo (Phys. Rev. Let. 95, 182302) (Phys. Rev. D 89, 111101) (Nucl. Phys. A 925 (2014) 25) (Nucl.Phys.A781 (2007) 209-226,)

NEMO-3 analyses

 2νββ measurements and 0νββ limits for several isotopes • 100Mo (Phys. Rev. Let. 95, 182302) • 48Ca (Phys. Rev. D 93, 112008)

Background-free in 0vββ region for high-Q_{ββ} isotopes

NEMO-3 analyses: ⁸²Se

2vββ measurements and 0vββ limits for several isotopes

- 100Mo (Phys. Rev. Let. 95, 182302)
- 48Ca (Phys. Rev. D 93, 112008)
- 82Se (Eur. Phys. J. C (2018) 78: 821)

World's

best

Summed 2-electron spectrum

2νββ:

 $T_{1/2} = 9.39 \pm 0.17$ (stat) ± 0.58 (sys) x 10¹⁹ years (SSD hypothesis)

Ονββ: T_{1/2} > 2.5 x 10²³ years (90% C.L.)

Higher state dominated - many excited

Single state dominated - mostly one intermediate state

Individual electron spectrum helps identify intermediate states in **ßß** transition

states

NEMO-3 analyses: ⁸²Se

• $2\nu\beta\beta$ measurements and $0\nu\beta\beta$ limits for several isotopes

- 100Mo (Phys. Rev. Let. 95, 182302)
- 48Ca (Phys. Rev. D 93, 112008)
- 82Se (Eur. Phys. J. C (2018) 78: 821)
- 150Nd (Phys. Rev. D 94, 072003)
- 116Cd (Phys. Rev. D 95, 012007)
- 130Te (Phys. Rev. Lett. 107, 062504)
- 96Zr (Nucl.Phys.A847:168-179) 🛣

Summed 2-electron spectrum

2νββ:

 $T_{1/2} = 9.39 \pm 0.17$ (stat) ± 0.58 (sys) x 10¹⁹ years (SSD hypothesis)

Ονββ: T_{1/2} > 2.5 x 10²³ years (90% C.L.)

Single state dominated - mostly one intermediate state

Individual electron spectrum helps identify intermediate states in ββ transition

states

NEMO-3 - quadruple beta decay

- $2\nu\beta\beta$ measurements and $0\nu\beta\beta$ limits for several isotopes
 - 100Mo (Phys. Rev. Let. 95, 182302)
 - 48Ca (Phys. Rev. D 93, 112008)
 - 82Se (Eur. Phys. J. C (2018) 78: 821)
 - 150Nd (Phys. Rev. D 94, 072003)
 - 116Cd (Phys. Rev. D 95, 012007)
 - · 130Te (Phys. Rev. Lett. 107, 062504)
 - **96Zr** (Nucl.Phys.A847:168-179)
- · Quadruple β decay (Phys. Rev. Lett. 119, 041801)

	NEMO-3	SuperNEMO den
Mass [kg] (main isotopes)	7 (¹⁰⁰ Mo)	7 (⁸² Se)
$T_{1/2}^{2\nu}$ [y]	6.8 x 10 ¹⁸	9.4 x 10
Energy resolution		
FWHM at 1 MeV	15 %	8 %
FWHM at 3 MeV	8 %	4 %
Source radiopurity		
A(²⁰⁸ TI)	$\sim 100 \; \mu { m Bq/kg}$	$< 2 \ \mu Bq/$
A(²¹⁴ Bi)	$<$ 300 μ Bq/kg	$<$ 10 μ Bq
Level of radon A(²²² Rn)	$\sim 5.0 \text{ mBq/m}^3$	< 0.15 mBc
Sensitivity after 5 (2.5) y data taking	$T_{1/2}^{0 u}>10^{24}~{ m y}$	$T_{1/2}^{0\nu} > 6 \times 1$

	NEMO-3	SuperNEMO den
Mass [kg] (main isotopes)	7 (¹⁰⁰ Mo)	7 (⁸² Se)
$T_{1/2}^{2\nu}$ [y]	6.8 x 10 ¹⁸	9.4 x 10
Energy resolution		
FWHM at 1 MeV	15 %	8 %
FWHM at 3 MeV	8 %	4 %
Source radiopurity		
A(²⁰⁸ TI)	$\sim 100~\mu{ m Bq/kg}$	$<$ 2 μ Bq/
A(²¹⁴ Bi)	$<$ 300 μ Bq/kg	$<$ 10 μ Bq
Level of radon A(²²² Rn)	$\sim 5.0 \text{ mBq/m}^3$	< 0.15 mBc
Sensitivity after 5 (2.5) y data taking	$T_{1/2}^{0 u}>10^{24}$ y	$T_{1/2}^{0 u} > 6 \times 1$

	NEMO-3	SuperNEMO den
Mass [kg] (main isotopes)	7 (¹⁰⁰ Mo)	7 (⁸² Se)
$T_{1/2}^{2\nu}$ [y]	6.8 x 10 ¹⁸	9.4 x 10
Energy resolution		
FWHM at 1 MeV	15 %	8 %
FWHM at 3 MeV	8 %	4 %
Source radiopurity		
A(²⁰⁸ TI)	$\sim 100 \; \mu { m Bq/kg}$	$< 2 \ \mu Bq/$
A(²¹⁴ Bi)	$<$ 300 $\mu { m Bq/kg}$	$<$ 10 μ Bq
Level of radon A(²²² Rn)	$\sim 5.0 \text{ mBq/m}^3$	< 0.15 mBc
Sensitivity after 5 (2.5) y data taking	$T_{1/2}^{0 u} > 10^{24} ext{ y}$	$T_{1/2}^{0\nu} > 6 \times 1$

	NEMO-3	SuperNEMO den
Mass [kg] (main isotopes)	7 (¹⁰⁰ Mo)	7 (⁸² Se
$T_{1/2}^{2\nu}$ [y]	6.8 x 10 ¹⁸	9.4 x 10
Energy resolution		
FWHM at 1 MeV	15 %	8 %
FWHM at 3 MeV	8 %	4 %
Source radiopurity		
A(²⁰⁸ TI)	$\sim 100 \; \mu { m Bq/kg}$	$< 2 \ \mu Bq/$
A(²¹⁴ Bi)	$<$ 300 μ Bq/kg	$<$ 10 μ Bq
Level of radon A(²²² Rn)	$\sim 5.0 \text{ mBq/m}^3$	< 0.15 mBc
Sensitivity after 5 (2.5) y data taking	$ T_{1/2}^{0 u} > 10^{24} m y$	$T_{1/2}^{0\nu} > 6 \times 1$

	NEMO-3	SuperNEMO den
Mass [kg] (main isotopes)	7 (¹⁰⁰ Mo)	7 (⁸² Se
$T_{1/2}^{2\nu}$ [y]	6.8 x 10 ¹⁸	9.4 x 10
Energy resolution		
FWHM at 1 MeV	15 %	8 %
FWHM at 3 MeV	8 %	4 %
Source radiopurity		
A(²⁰⁸ TI)	$\sim 100 \; \mu { m Bq/kg}$	$< 2 \ \mu Bq/$
A(²¹⁴ Bi)	$<$ 300 $\mu { m Bq/kg}$	$<$ 10 μ Bq
Level of radon A(²²² Rn)	$\sim 5.0 \text{ mBq/m}^3$	< 0.15 mBc
Sensitivity after 5 (2.5) y data taking	$T_{1/2}^{0 u} > 10^{24} m y$	$T_{1/2}^{0\nu} > 6 \times 1$

	NEMO-3	SuperNEMO den
Mass [kg] (main isotopes)	7 (¹⁰⁰ Mo)	7 (⁸² Se)
$T_{1/2}^{2\nu}$ [y]	6.8 x 10 ¹⁸	9.4 x 10
Energy resolution		
FWHM at 1 MeV	15 %	8 %
FWHM at 3 MeV	8 %	4 %
Source radiopurity		
A(²⁰⁸ TI)	$\sim 100 \; \mu { m Bq/kg}$	$< 2 \ \mu Bq/$
A(²¹⁴ Bi)	$<$ 300 μ Bq/kg	$<$ 10 μ Bq
Level of radon A(²²² Rn)	$\sim 5.0 \text{ mBq/m}^3$	< 0.15 mBc
Sensitivity after 5 (2.5) y data taking	$ T_{1/2}^{0 u} > 10^{24} m y$	$T_{1/2}^{0\nu} > 6 \times 1$

⁸²Se source foils

- 6.3 kg of ββ emitter (⁸²Se) in 34 foils (plus 2 Cu foils)
- Enriched selenium powder mixed with PVA in Mylar wrapper
- Purified with distillation / chromatography / chemical precipitation
- Now installed at LSM
- **BiPo detector** measured ²⁰⁸TI and ²¹⁴Bi contamination:
- targets 10µBq/kg ²¹⁴Bi, 2µBq/kg ²⁰⁸TI too low to confirm with current BiPo measurement
- measure activities *in situ*

Source frame and calibration source deployment system

Cheryl Patrick, UCL

- 42 207 Bi sources with known spectrum •
- Automatically deployed ~ once a week for ~15 hours
- Lowered from top of detector (between foils) via copper wire with plumb bob
- Position controlled with lasers

Wire trackers

3 metres

• Charged particle passes through the detector

- Electron avalanche drifts to anode (Geiger mode)
- Drift time gives radius of closest approach r

- Charged particle passes through the detector
- Electron avalanche drifts to anode (Geiger mode)
- Drift time gives radius of closest approach *r*
- Plasma propagates towards the two cathode end caps
 - Difference in drift times gives distance along wire z

Allows 3-d track reconstruction

Building the tracker

2034 drift cells (13,000 wires!)

Arranged in 113 rows of 9 cells (from source to calorimeter wall) on each side of $\beta\beta$ source

Building the tracker

Installed into 4 C-shaped tracker sections

Tracker assembly and commissioning

Completed C-section

Cheryl Patrick, UCL

Checking for o	dus	st			0			
					\bigcirc			
					\bigcirc			
					\bigcirc			
					\bigcirc			
					\bigcirc			
					\bigcirc	\bigcirc		
				,	,	\bigcirc		
						\bigcirc		
-								

Commissioning with cosmic rays

The tracker at LSM

Cheryl Patrick, UCL

Radon 222 (from U decay chain): target activity 150 µBq / m³

~ 30 times lower than NEMO-3

Reduce radon contamination with radio-pure components

Emanation chamber lets us measure activity of tracker components and materials: select only the most radio-pure

70 litre electrostatic detector sensitive down to 0.09mBq

Radon 222 (from U decay chain): target activity 150 µBq / m³

Radon 222 (from U decay chain): target activity 150 µBq / m³

Reduce radon contamination with radio-pure components

Emanation chamber lets us measure activity of tracker components and materials: select only the most radio-pure Remove Rn with cold carbon trap

70 litre electrostatic detector sensitive down to 0.09mBq

Radon concentration line lets us measure the low activities in the tracker

Measured activity: 2.7 ± 0.3 mBq / m³ Flush with He: 2 m³ / hour **Resulting** activity: 0.15 mBq / m³

Remove radon from tracker gas (95% helium, 1% argon, 4% ethanol)

He: 10¹⁰ x suppression - completely **clean N₂:** 20x purification - 20 µBq/m³

Radon 222 (from U decay chain): target activity 150 µBq / m³

Reduce radon contamination with radio-pure components

Emanation chamber lets us measure activity of tracker components and materials: select only the most radio-pure Remove Rn with cold carbon trap

70 litre electrostatic detector sensitive down to 0.09mBg

Radon concentration line lets us measure the low activities in the tracker

Measured activity: 2.7 ± 0.3 mBq / m³ Flush with He: 2 m³ / hour **Resulting** activity: 0.15 mBq / m³

Remove radon from tracker gas (95% helium, 1% argon, 4% ethanol)

He: 10¹⁰ x suppression - completely **clean N₂:** 20x purification - 20 µBq/m³

Fully-instrumented tracker gives:

topological and timing cuts

- Event vertex
- Particle ID
- Timings \rightarrow direction of travel

Reject non-ββ topologies at analysis time

Calorimeter development

Main calorimeter walls: 520 optical modules With side, top and bottoms: 712 modules total

Nucl. Inst. Meth. A 868, 98-108 (2017)

Main calorimeter walls: 520 optical modules With side, top and bottoms: 712 modules total

Contributions to improved resolution

Main calorimeter walls: 520 optical modules With side, top and bottoms: 712 modules total

Contributions to improved resolution **HV** Divider 7% Scintillator/PMT Coupling 26% Quantum Efficiency Scintillator 33% Composition 16% Scintillator Surfaces/ Wrapping 10%

440 8" radiopure PMTs with improved photocathode quantum efficiency (5" PMTs for outer rows and columns. side, top and bottom)

collaboratio

Calorimeters in place at LSM

- gain drift within 1%

Both calorimeter walls in place at LSM Light Injection calibration system to monitor

Cheryl Patrick, UCL

1. French-side tracker joined to calorimeter wall

Cheryl Patrick, UCL

calorimeter wall

2. Source foils and calibration system installed

1. French-side tracker joined to

calorimeter wall

2. Source foils and calibration system installed

3. Tracker closed

1. French-side tracker joined to calorimeter wall

2. Source foils and calibration system installed

3. Tracker closed

4. Italian-side tracker transport calorimeter wall

Half-detector commissioning results

calorimeter wall

system installed

3. Tracker closed

calorimeter wall

To do:

- •
- ٠
- Commissioning
- **First data!** •

http://supernemo.org

Plan view (partial)

http://supernemo.org

Plan view (partial)

Summed 2-electron energy is best distribution to separate signal from background

http://supernemo.org

Sensitivity to 0vββ

Summed 2-electron energy is best distribution to separate signal from background

Using a **boosted decision tree**, we can **improve sensitivity** by including **other** variables (angle between tracks, individual electron energies, internal/ external probability, vertex separation...) (approx 10% improvement)

Sensitivity to 0vββ

T_{1/2} > 5.85 x 10²⁴ years (90% C.L) For 7kg of ⁸²Se (demonstrator) and 2.5 years' exposure

Summed 2-electron energy is best distribution to separate signal from background

Using a **boosted decision tree**, we can **improve sensitivity** by including **other** variables (angle between tracks, individual electron energies, internal/ external probability, vertex separation...) (approx 10% improvement)

http://supernemo.org

Cheryl Patrick, UCL

Exotic Ovßß mechanisms

Cheryl Patrick, UCL

Exotic Ovßß mechanisms

2vββ: SSD/HSD discrimination at 5σ level

Cheryl Patrick, UCL

- **Exotic Ovßß mechanisms**
- 2vββ: SSD/HSD discrimination at 5σ level
 - Probe nuclear physics by measuring g_A

- **Exotic Ovßß mechanisms**
- $2v\beta\beta$: SSD/HSD discrimination at 5σ level
 - Probe nuclear physics by measuring g_A
 - Lorentz invariance violation test

- **Exotic Ovßß mechanisms**
- $2v\beta\beta$: SSD/HSD discrimination at 5σ level
 - Probe nuclear physics by measuring g_A
 - Lorentz invariance violation test
- Alternative isotopes: ¹⁵⁰Nd and ⁴⁸Ca, with high Q_{ββ}

Cheryl Patrick, UCL

Exotic Ovßß mechanisms $2v\beta\beta$: SSD/HSD discrimination at 5σ level **Probe nuclear physics by measuring g_A** Lorentz invariance violation test Alternative isotopes: ¹⁵⁰Nd and ⁴⁸Ca, with high Q_{ββ} **0v4β: for** ¹⁵⁰Nd

Full SuperNEMO prospects

100kg isotope - T_{1/2} \sim 10^{26} years $\langle m_v \rangle < 40-100 \text{ meV}$

http://supernemo.org

Tracker-calorimeter detectors for the next generation

Cheryl Patrick, UCL

- ¹⁵⁰Nd, ⁴⁸Ca have shorter 2vββ half-lives
- Currently too **expensive to enrich** large amounts... but research is ongoing
- Current investigation how much would we need to probe inverted hierarchy? (O(10³) kg.year)

http://supernemo.org

- ¹⁵⁰Nd, ⁴⁸Ca have shorter 2vββ half-lives
- Currently too **expensive to enrich** large amounts... but research is ongoing
- Current investigation how much would we need to probe inverted hierarchy? (O(10³) kg.year)

- 150Nd, 48Ca have shorter 2vββ half-lives
- Currently too **expensive to enrich** large amounts... but research is ongoing
- Current investigation **how much** would we need to probe inverted hierarchy? (O(10³) kg.year)

Background suppression

- **Demonstrator** will tell us how well we are suppressing backgrounds
- Irreducible 2vββ background depends on isotope

- 150Nd, 48Ca have shorter 2vββ half-lives
- Currently too **expensive to enrich** large amounts... but research is ongoing
- Current investigation **how much** would we need to probe inverted hierarchy? (O(10³) kg.year)

Background suppression

- **Demonstrator** will tell us how well we are suppressing backgrounds
- Irreducible 2vββ background depends on isotope

Efficiency

- Could a different **geometry** improve our detector acceptance (eg scintillator bar design)?
- What about other **tracker** or **calorimeter** technologies?
- Can we improve **reconstruction** algorithms' efficiency?

Construction

- Apply what we learned from Demonstrator to make further modules more quickly / cheaply
- Are there **cheaper components / designs**?
- Can we **contract out** the construction?

To summarise...

The NEMO tracker-calorimeter architecture

- Particle ID to reject backgrounds •
- Can use any solid ββ isotope

• Topological information lets us probe the underlying physics of double-beta decay

collaboratio

To summarise...

The NEMO tracker-calorimeter architecture

- Particle ID to reject backgrounds
- Can use any solid $\beta\beta$ isotope

NEMO-3

- Set limits on $0\nu\beta\beta$ and measured $2\nu\beta\beta$ half-lives for **7** isotopes
- World's best for 6 of these!
- ⁸²Se and ¹⁰⁰Mo favoured SSD decay mechanism

Topological information lets us probe the underlying physics of double-beta decay

To summarise...

The NEMO tracker-calorimeter architecture

- **Particle ID** to reject backgrounds
- Can use any solid $\beta\beta$ isotope

NEMO-3

- Set limits on $0\nu\beta\beta$ and measured $2\nu\beta\beta$ half-lives for **7** isotopes
- World's best for 6 of these!
- ⁸²Se and ¹⁰⁰Mo favoured SSD decay mechanism

SuperNEMO Demonstrator

- Extensible, modular design starting with ~7kg of ⁸²Se
- NEMO-3 sensitivity in **4.5 months**
- First data coming soon

Topological information lets us probe the underlying physics of double-beta decay

Improved calorimeter resolution, radon removal, source radio-purity...

To summarise...

The NEMO tracker-calorimeter architecture

- **Particle ID** to reject backgrounds
- Can use any solid $\beta\beta$ isotope

NEMO-3

- Set limits on $0\nu\beta\beta$ and measured $2\nu\beta\beta$ half-lives for **7** isotopes
- World's best for 6 of these!
- ⁸²Se and ¹⁰⁰Mo favoured SSD decay mechanism

SuperNEMO Demonstrator

- Extensible, modular design starting with ~7kg of ⁸²Se **Improved** calorimeter resolution, radon removal, source radio-purity...
- NEMO-3 sensitivity in **4.5 months**
- First data coming soon

The future

- R&D underway for next-generation tracker-calo experiments to cover full inverted hierarchy
- If there's a discovery best way to fully characterise 0vββ

Topological information lets us probe the underlying physics of double-beta decay

To summarise...

The NEMO tracker-calorimeter architecture

- **Particle ID** to reject backgrounds
- Can use any solid $\beta\beta$ isotope

NEMO-3

- Set limits on $0\nu\beta\beta$ and measured $2\nu\beta\beta$ half-lives for **7** isotopes
- World's best for 6 of these!
- ⁸²Se and ¹⁰⁰Mo favoured SSD decay mechanism

SuperNEMO Demonstrator

- Extensible, modular design starting with ~7kg of ⁸²Se
- NEMO-3 sensitivity in **4.5 months**
- First data coming soon

The future

- R&D underway for next-generation tracker-calo experiments to cover full inverted hierarchy
- If there's a discovery **best way to fully characterise 0vββ**

Topological information lets us probe the underlying physics of double-beta decay

supernemo

collaboration

Backup Slides

Source foil contamination measured at the BiPo-3 detector

Cheryl Patrick, UCL

- Dedicated detector at Canfranc, Spain
- Designed to measure very **low activities**
- Looks for characteristic signature of Bi β decay followed by α decay of Po daughter (U and Th decay chains)
- Targets 10µBq /kg (²¹⁴Bi), 2µBq/kg (²⁰⁸TI)
- Not very sensitive to ²¹⁴Bi final measurements will be taken *in situ*

Tracker gas system

95% Helium

Low atomic mass; prevents multiple scattering and energy loss

1% Argon

Low ionisation energy; helps avalanche propagate

4% Ethanol

Quenches avalanche; prevents re-firing

Gas system controlled by Raspberry Pi to monitor and control temperature, pressure, flow rate 2°C temperature change \rightarrow 0.5% change in ethanol fraction \rightarrow tracker efficiency

Target activity: 0.15 mBq / m³

Two things to consider: tracker components and gas mixture

Target activity: 0.15 mBq / m³

Two things to consider: tracker components and gas mixture

Tracker components

Flush with helium

Potential component emanates radon in chamber (10 days+)

70-litre electrostatic detector can measure activities down to **0.09 mBq**

Target activity: 0.15 mBq / m³

Two things to consider: tracker components and gas mixture

Tracker gas

0.15 mBq / m³ \rightarrow 0.01 mBq in 70 litres

Tracker components

Flush with helium

Potential component emanates radon in chamber (10 days+)

70-litre electrostatic detector can measure activities down to **0.09 mBq**

Target activity: 0.15 mBq / m³

Two things to consider: tracker components and gas mixture

Tracker gas

0.15 mBq / m³ \rightarrow 0.01 mBq in 70 litres

Tracker components

Flush with helium

Potential component emanates radon in chamber (10 days+)

70-litre electrostatic detector can measure activities down to **0.09 mBq**

Target activity: 0.15 mBq / m³

Two things to consider: tracker components and gas mixture

Tracker gas

- 0.15 mBq / m³ \rightarrow 0.01 mBq in 70 litres
- UCL developed the radon concentration line (RnCL)

Tracker components

Flush with helium

Potential component emanates radon in chamber (10 days+)

70-litre electrostatic detector can measure activities down to **0.09 mBq**

Target activity: 0.15 mBq / m³

Two things to consider: tracker components and gas mixture

Tracker gas

- 0.15 mBq / m³ \rightarrow 0.01 mBq in 70 litres
- UCL developed the radon concentration line (RnCL)

Trap radon

Flush from source into carbon trap and cool - radon is trapped and cannot escape

Tracker components

Flush with helium

Potential component emanates radon in chamber (10 days+)

70-litre electrostatic detector can measure activities down to **0.09 mBq**

Target activity: 0.15 mBq / m³

Two things to consider: tracker components and gas mixture

Tracker gas

- 0.15 mBq / m³ \rightarrow 0.01 mBq in 70 litres
- UCL developed the radon concentration line (RnCL)

Release the radon

Seal and heat trap to release the trapped radon

Tracker components

Flush with helium

Potential component emanates radon in chamber (10 days+)

70-litre electrostatic detector can measure activities down to **0.09 mBq**

Target activity: 0.15 mBq / m³

Two things to consider: tracker components and gas mixture

Tracker gas

- 0.15 mBq / m³ \rightarrow 0.01 mBq in 70 litres
- UCL developed the radon concentration line (RnCL)

Flush helium through trap to detector

Radon is now concentrated enough that the we can detect it.

Use trapping and detection efficiencies to get from measured activity to original activity.

Tracker components

Flush with helium

Potential component emanates radon in chamber (10 days+)

70-litre electrostatic detector can measure activities down to **0.09 mBq**

Radon measurement system now being used by dark matter experiments

Concentration line measures tracker activity 2.7 ± 0.3 mBq / m³ Requirement is **0.15 mBq / m³** Activity **18** times too high

At LSM now: half-detector commissioning

http://supernemo.org

At LSM now: half-detector commissioning

March 2017: half-detector commissioning

Geiger hits within 1µs of calorimeter hit

SuperNEMO event displays

Cheryl Patrick, UCL

SuperNEMO event displays

Cheryl Patrick, UCL

Aiming at zero background

Events in window $E_{SUM} \in [2.8, 3.2] \text{ MeV}$	NEMO-3 Phase 2 (29 kg.yr)	Demonstrator Module (29 kg.yr)	Comments	
External Bkgnd	<0.16	<0.16	(conservative)	NEMO-3
Bi214 from Rn222	2.5 ± 0.2	0.07	radon reduction	sensitivity in 4.5 months !
Bi214 internal	0.80 ± 0.08	0.07		
TI208 internal	2.7 ± 0.2	0.05	internal contamination reduction	
2νββ	7.16 ± 0.05	0.20	Mo100 to Se82 8% to 4% resolution	
Total expected	13.1 ± 0.3	0.39		
Data	12	N/A (yet)		

http://supernemo.org

NEMO-3 results summary

Isotope	Mass (g)	Q _{ββ} (keV)	T(^{2v}) (x10 ¹⁹ yrs)	S/B	Comment	Reference	
Se82	932	2997.9	9.4 ± 0.6	4	World's best	Eur. Phys. J. C (2018) 78: 821	NEW
Cd116	405	2813.5	2.74 ± 0.18	10	World's best*	Phys. Rev. D 95 (2017) 012007	
Nd150	37	3371.4	0.93 ± 0.06	2.7	World's best	Phys. Rev. D 94 (2016) 072003	
Zr96	9.4	3355.8	2.35 ± 0.21	1	World's best	Nucl.Phys.A 847(2010) 168	
Ca48	7	4268	6.4 ± 1.2	6.8 (h.e.)	World's best	Phys. Rev. D 93 (2016) 112008	
Mo100	6914	3034	0.68 ± 0.05	80	World's best	Neutrino 2018	UPDATED
Te130	454	25227.5	70 ± 14	0.5	First direct detection	Phys. Rev. Lett. 107, 062504 (2011)	

Crucial experimental input for

1) NME calculations

2) Ultimate background characterisation for 0ν

3) Sensitive to exotic BSM physics (e.g. Lorentz violation, *G_f* time dependence, bosonic neutrinos etc)

Taken from R Saakyan, NDM2018

* Together with Aurora

Plan view (partial)

Electron tracks curve in the magnetic field. We get the electron's energy from an associated calorimeter hit.

If there's a hit in the first tracker layer, try to project back to foil

Background topologies: gammas and alphas

The signature of a **gamma** is an isolated calorimeter hit, with no associated charged particle track

 $E = 0.77 \pm 0.03 \text{ MeV}$ $t = 3.31 \pm 0.23$ ns

Use timing and energies to assess probability that

- a gamma originates from electron vertex
- multiple isolated hits originate from the same gamma

http://supernemo.org

Background topologies: gammas and alphas

The signature of a **gamma** is an isolated calorimeter hit, with no associated charged particle track

 $E = 0.77 \pm 0.03 \text{ MeV}$ $t = 3.31 \pm 0.23$ ns

Use timing and energies to assess probability that

- a gamma originates from electron vertex
- multiple isolated hits originate from the same gamma

http://supernemo.org

Summed 2-electron energy is best distribution to separate signal from background

http://supernemo.org

Sensitivity to 0vββ

Summed 2-electron energy is best distribution to separate signal from background

Using a **boosted decision tree**, we can **improve sensitivity** by including **other** variables (angle between tracks, individual electron energies, internal/ external probability, vertex separation...) (approx 10% improvement)

Sensitivity to 0vββ

T_{1/2} > 5.85 x 10²⁴ years (90% C.L) For 7kg of ⁸²Se (demonstrator) and 2.5 years' exposure

Summed 2-electron energy is best distribution to separate signal from background

Using a **boosted decision tree**, we can **improve sensitivity** by including **other** variables (angle between tracks, individual electron energies, internal/ external probability, vertex separation...) (approx 10% improvement)

http://supernemo.org

Cheryl Patrick, UCL

integration

complete in 2018

Cheryl Patrick, UCL

http://supernemo.org

R & D for SuperNEMO: scintillator bar proposal (possible alternative)

2 m

Hamamatsu high-QE 3" PMT (QE~40%)

Width 10cm tapered to 6.5 cm Thickness 2.5 cm

http://supernemo.org

R & D for SuperNEMO: scintillator bar proposal (possible alternative)

2 m Width 10cm tapered to 6.5 cm Hamamatsu high-QE 3" Thickness 2.5 cm PMT (QE~40%) Alternating walls of bars and source foils sandwiched between trackers

R & D for SuperNEMO: scintillator bar proposal (possible alternative)

http://supernemo.org

Alternating walls of bars and source foils sandwiched between

- Almost 100% γ rejection Fewer PMTs - save ££ and
- No magnetic field needed

- Loses modular design
- Currently o/E worse than for Demonstrator (2.3 vs 1.8% at 3MeV)

The future for SuperNEMO & tracker-calorimeter experiments

If current experiments (KamLAND-Zen, GERDA...) see 0vββ (T_{1/2} ~10²⁶ years)

http://supernemo.org

If current experiments (KamLAND-Zen, GERDA...) see 0vββ (T_{1/2} ~10²⁶ years)

- SuperNEMO's unique tracker-calorimeter technology is the best way to characterise the 0vßß mechanism
- **Full SuperNEMO** proposal has similar **half-life sensitivity** to current world-leading experiments **Mass sensitivity** could be even better by choosing high- $Q_{\beta\beta}$ isotopes with **shorter half-life**
- But scaling to even the current proposal is expensive...

If current experiments (KamLAND-Zen, GERDA...) see $0\nu\beta\beta$ (T_{1/2} ~10²⁶ years)

- SuperNEMO's unique tracker-calorimeter technology is the best way to characterise the 0vßß mechanism
- **Full SuperNEMO** proposal has similar **half-life sensitivity** to current world-leading experiments
- **Mass sensitivity** could be even better by choosing high- Q_{BB} isotopes with **shorter half-life**
- But scaling to even the current proposal is expensive...

If next-generation experiments (NEXO, LEGEND...) see $0\nu\beta\beta$ (T_{1/2} ~10²⁸ years)

- Next-gen experiments will cover full **inverted** hierarchy
- Prohibitively **expensive** to increase to **tonne scale** (price scales linearly with size)
- Can we make an **affordable tracker-calorimeter detector** that can probe this mass range?

