Current status and future prospects of KamLAND-Zen

23 October 2018
DBD18 @ Hilton
Waikoloa Village

Kunio Inoue
Research Center for Neutrino Science,
Tohoku University
KamLAND(-Zen) collaboration

Japan
Tohoku University, RCNS
University of Tokyo, Kavli IPMU
Osaka University
Tokushima University
Kyoto University new

US
University of California Berkeley
University of Tennessee
Triangle University Nuclear Laboratory
University of Washington
Massachusetts Institute of Technology
Virginia Polytechnic Institute and State University
University of Hawaii
Boston University new

Netherland
Nikhef, University of Amsterdam

※ Second affiliation is not listed.

~50 physicists

Collaboration meeting @MIT
We chose ^{136}Xe as it can be loaded in LS up to ~3 wt%.

KamLAND - Zen

90% enriched ^{136}Xe
- 320kg for phase-I
- 380kg for phase-II
- 750kg for Zen 800 (to start in months)

Zero Neutrino double beta decay search

136Xe

Noble gas
Centrifugal enrichment possible
$Q_{\beta\beta}=2459 \text{ keV}$
(below ^{208}TI 3198-5001 keV)

Advantages of using KamLAND

① low cost and quick start
 (running detector)
② BG can be identified
 (full active thick shielding)
③ In-situ purification possible
 (liquid media)
④ On/Off measurements possible
 (xenon is removable)
⑤ multi-purpose
 (geo-neutrino)
⑥ easily scalable
 (mini-balloon)
Test fabrication and rehearsal of installation (since 2009)

Xenon handling system

25 µm-T Nylon-6 prototype

10m length when folded

Rehearsal with 8 m depth pool

80 µm-T PE prototype

Xenon mixing, density control

Established stratified replacement

Clean tent in the dome

New cavity, buffer tanks
Mini-balloon fabrication for Zen 400

Work in class-1 super-clean-room
(class 1: # of 0.5 μm particles in 1 cubic feet < 1

- Less material → 25μm Nylon-6
 - Transparency 99.4% @400nm
 - Strength 19.4 N/cm
 - Xe permeability < 220 g/year
- Low radio impurity → film w/o filler
 - U : 150 → 2×10^{-12}g/g
 - Th : 59 → 3×10^{-12}g/g
 - ^{40}K : 140 → 2×10^{-12}g/g

- all tools and parts are cleaned in this room

Crafting 24 gores

Ultrasonic washer

Vectoran strings connected to 12 Nylon belts

Corrugated tube (7m)

Film part (~6m)

Straight part

Cone part

3.08m

24 gores

newly developed impulse heat welding
Balloon and tube installation

Go through light insulator

Inflated with dummy LS and replaced with xenon-loaded LS, Retracted the tube after density adjustment.

Good job!
minimum inactive detector material basically 25 µm-t balloon film only

Picture in September 2011, everything has been done in two years!!

低 cost and quick start
KamLAND-Zen 400 phase I
(320kg xenon loading)

(a) DS-1 + DS-2

Before and after filtration

Events/0.05MeV

Visible Energy (MeV)

Data
Total
\(^{136}\text{Xe} 2\nu\beta\beta\)
Total
\((0\nu\beta\beta \text{ U.L.})\)
\(^{136}\text{Xe} 0\nu\beta\beta\)
(90% C.L. U.L.)

\(^{238}\text{U Series}\)
\(^{232}\text{Th Series}\)
\(^{210}\text{Bi}\)
\(^{85}\text{Kr}\)
\(^{208}\text{Bi}\)
\(^{88}\text{Y}\)
\(^{110m}\text{Ag}\)

External BG
Spallation

LS balloon
LS
LS

Unexpected BG has found
Thanks to **full active apparatus**, 213.4 days

208Tl is above ROI

Dominant ①BG identified as 110mAg

No escape β/γ makes BG spectrum simple

Xenon can be degassed from Xe-LS.

And 136Xe ③on/off measurement has been demonstrated.

(useful for signal confirmation)
Phase-1 320kg
before purification

Phase-2 380kg
after purification

110mAg
reduction 1/20

Event distribution:
(a) DS-1 + DS-2
- Data
- Total
- 136Xe 2νββ
- Total (0νββ U.L.)
- 136Xe 0νββ
- External BG
- Spallation

(a) Period-2
- Data
- 110mAg
- Total
- 238U + 232Th + 210Bi
- Total 210Po + 85Kr + 40K
- 136Xe 2νββ
- 136Xe 0νββ
- IB/External
- IB/External
- Spallation

Visible Energy (MeV)

Events/0.05MeV

>1.9x10^{25}y

2013/12/11 - 2014/10/27
534.5 days (504 kg-yr)

(cf. T_{1/2}(^{110m}Ag)=250 days)

② in-situ purification possible!!
KamLAND-Zen 400 Phase 1+2 combined

\[T^{0\nu}_{1/2} > 1.07 \times 10^{26} \text{ yr} \]

(sensitivity 5.6×10^{25} \text{ yr})

It also provides upper limit of \(m_{\text{lightest}} \) at 180-480 meV.

\[\langle m_{\beta\beta} \rangle < (61 - 165) \text{ meV} \]

Big leap toward IH region!
“Advantages of using KamLAND”

have been all demonstrated;

① low cost and quick start
 (running detector)

② BG can be identified
 (full active thick shielding)

③ In-situ purification possible
 (liquid media)

④ On/Off measurements possible
 (xenon is removable)

⑤ multi-purpose
 (ex. geo-neutrino)

⑥ easily scalable
 (mini-balloon)
4 multi-purpose

Geo-neutrino observation may conclude primordial meteorite of the earth, and dynamics of the mantle!!
And more …
○ Pre-supernova alarm using Silicon-burning neutrinos
○ Simultaneous measurement of supernova temperature and luminosity with coherent scattering on hydrogen
○ Very long baseline (Korean) reactor oscillation (if Japanese ones are suspended)
○ Verification of CPT in comparison with neutrino and anti-neutrino oscillation (when Japanese reactors come up)
○ MSW upturn of solar 8B neutrinos above 2 MeV
○ CNO cycle neutrinos (maybe with new electronics)
○ Physics with J-PARC neutrino beam
○ Search for charged dark matter with small mass difference to LSP
○ Sterile neutrino search with cyclotron (IsoDAR)
○ Verification of DAMA/LIBRA with NaI deployment

Yes, KamLAND-Zen has diverse physics targets
2nd mini-balloon fabrication

cleaning, cleaning and cleaning as usual
Example of improvements

before

after

keep staying away
goggle
welding machine
cover sheet
glove on glove
laundry twice a day
clean underwear
changing room in a clean room
dust visualization
more neutralizer

cover sheets
after Leak check and repair

New mini-balloon has been deployed and inflated with “dummy” LS in August 2016

spent $1+\alpha$ yrs in total
through characterization of mini-balloon

We confirmed that the mini-balloon is cleaner!!

Measures we took worked!

<table>
<thead>
<tr>
<th></th>
<th>x1E-12 g/g film</th>
<th>232Th</th>
<th>238U</th>
</tr>
</thead>
<tbody>
<tr>
<td>intrinsic</td>
<td></td>
<td>6</td>
<td>2 Target</td>
</tr>
<tr>
<td>This time*</td>
<td></td>
<td>31+-7</td>
<td>5.3+-0.8</td>
</tr>
<tr>
<td>Zen 400 1st</td>
<td></td>
<td>79+-3</td>
<td>14+-1</td>
</tr>
<tr>
<td>Zen 400 2nd</td>
<td></td>
<td>336+-2</td>
<td>46.1+-4</td>
</tr>
</tbody>
</table>

At the same time, we noticed:

Indications of leak;
- camera image
- load cell
- balloon shape reconstruction with 210Po events
- 222Rn decay rate
- mixture of KL-LS and dummy-LS by gas-chromatography

Yes, cleaner!

I might say we demonstrated we can notice...
Inspection of holes with a He leak detector

- **Possible cause**
 - Folded hard part
 - High pressure during deployment

- **Locations**
 - Found in Kamioka
 - Found in Sendai

- **Measurements**
 - 0.5 cm
 - ~2 cm
 - ~1 cm
 - 2-3 mm

- **High pressure when folding**
after 1.5 yrs of effort Including improvement of welding
mini-balloon installation May 10, 2018

50cm width for detector access
After 30.5 m³ LS filling, we started DAQ to investigate background status of LS and mini-balloon
Dummy LS filling

Dummy LS = non Xe loaded LS

After 30.5 m³ LS filling, we started DAQ to investigate background status of LS and mini-balloon
Simulation, mini-balloon stays as expected
Characterization of mini-balloon, again

214Bi-Po Delayed coincidence

Basic investigation before xenon.

✅ mini-balloon is clean
✅ no evidence of leakage
✅ 238U is low enough
!

232Th (~10^-15 g/g)

212Bi-Po in 232Th series is a possible BG.

64.06%
\(\beta + \gamma \)
2.25 MeV

212Po
0.299 μs

100%
\(\alpha \)
8.95 MeV

208Pb
22.3 y

Pileup BG is as large as current ¹⁰C BG and tolerable. But ¹⁰C rejection is improving, and we chose purification!
One more way to reduce 212Bi-Po pileup

KamLAND can tag sequential decay of 220Rn-216Po in 232Th series.

Both 208Tl, 212Bi-212Po can be suppressed with 2 days veto after the tag. Useful for $0\nu 2\beta$ search and low threshold 8B neutrino observation.
The discovery may be just around the corner.

KamLAND-Zen is closest !!!
And more future plans!

Higher energy resolution for reducing 2ν BG

\rightarrow KamLANDZ2-Zen

- Expansion of entrance

Winston cone light collection $\times 1.8$

- high q.e. PMT light collection $\times 1.9$
 $17'' \phi \rightarrow 20'' \phi \, \varepsilon = 22 \rightarrow 30+\%$

- New LAB LS light collection $\times 1.4$
 (better transparency)

expected $\sigma (2.6\text{MeV}) = 4\% \rightarrow \sim 2\%$

target sensitivity 20 meV

1000+ kg xenon
R&D for KamLAND2-Zen and future

- Winston cone
 - Succeeded with prototype

- HQE-PMT
 - Prototype in hand

- New LAB-LS
 - Purification succeeded with charcoal

- Denser xenon
 - Principle confirmed

- Scintillator film
 - Tag α in the film
 - 214Po reduction
 - 214Bi reduction

- Imaging
 - Welding succeeded requires fluor replacement
 - B/γ id.

30L prototype
PolyEthylene Naphthalate (PEN)

- $n = 10,500 \text{ph/MeV}$
- $\lambda_{\text{PEN}} = 425 \text{nm}$
- U, Th < 3 ppt

Welding easier & strong enough

Requires Bis-MSB in LS

$\tau \approx 27 \text{ nsec}$, much slower than Kam-LS 4 nsec

PSD possible

Test PEN balloon in UV light
Possible BG from natural radioactivity

\(^{214}\text{Bi} - ^{214}\text{Po} \) (missed)

- LS: 99.975% rejection (double pulse)
- Nylon6: ~50% rejection \(\rightarrow \) Obstacle to enlarge FV
- PEN: 99.95% rejection (double pulse)

\(^{212}\text{Bi} - ^{212}\text{Po} \) (pileup)

- 95% rejection (double pulse)
- 95% rejection (\(^{220}\text{Rn}-^{216}\text{Po} \) tagging)
- LS: 99.75% rejection in total \(\rightarrow \) Requires only \(10^{-15}\text{g/g} \)
- Nylon6: 97.5% rejection (no \(\alpha \) or double pulse)
- PEN: ~99.95% rejection (double pulse, \(^{220}\text{Rn}-^{216}\text{Po}, \text{PSD} \))

Any one of three \(\alpha \)

PEN enables thicker (easier to handle) film and/or larger FV.
Further 10C reduction, analysis & electronics

1. Triple fold coincidence

μ

$\tau = 208 \, \mu s$

2. Energy loss along μ track

$\tau = 27.8 \, s$

Two channel prototype (real is 16ch)

Wide range, low noise, fast FADC, ethernet data transfer

Baseline restoration with digital feedback or feedforward

Overshoot is the problem
Conceptual design

Rough extrapolation of BG estimation & sensitivity

<table>
<thead>
<tr>
<th></th>
<th>KamLAND-Zen 400</th>
<th>KamLAND-Zen 800</th>
<th>KamLAND2-Zen 2.38-2.58 MeV</th>
<th>KamLAND2-Zen High P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2\nu 2\beta$ [100kgXe/y]</td>
<td>7.4</td>
<td>7.4</td>
<td><0.15</td>
<td><0.15</td>
</tr>
<tr>
<td>^{10}C [100kgXe/y]</td>
<td>1.3 analysis</td>
<td>0.18</td>
<td>0.09 1.8 atm 0.05</td>
<td></td>
</tr>
<tr>
<td>^{8}B [100kgXe/y]</td>
<td>0.33</td>
<td>0.33</td>
<td>0.16 1.8 atm 0.09</td>
<td></td>
</tr>
<tr>
<td>FV (loading) [kgXe]</td>
<td>100 (380)</td>
<td>300 (750)</td>
<td>1000 (1000)</td>
<td>1000 (1000)</td>
</tr>
<tr>
<td>(Expected) reach</td>
<td>61-165 meV 1.07$\times 10^{26}$yr</td>
<td>40 meV 5$\times 10^{26}$yr</td>
<td>20 meV 2$\times 10^{27}$yr</td>
<td><20meV >2$\times 10^{27}$yr</td>
</tr>
</tbody>
</table>
Schedule

2019 KamLAND-Zen 800

2020 Environmental and peripheral preparation

2021 KamLAND upgrade

2022 No observation

2023 KamLAND2 start

2024 Geo-neutrino observation

2025 KamLAND2-Zen start

2026 Investigation of Majorana nature

2027

2028

- Purchase enriched Xenon (200kg)
- Installation of MoGURA2
- Clean room fabrication
- Clean air system installation
- Purification system upgrade
- Light concentrator production
- Large balloon production

- Purchase HQE-PMT
- LS drain
- Expansion of entrance
- PMT replacement/mirror attachment
- Large balloon installation
- Refurbishment of N2 system
- New LS production
- LS filling
- Development of calibration system

- Mini-balloon installation
- Xenon installation
Summary

• KamLAND-Zen 400 has the current world best record on effective Majorana mass of neutrinos.

\[T_{1/2}^{0\nu} > 1.07 \times 10^{26} \text{ yr} \]

\[\langle m_{\beta\beta} \rangle < (61 - 165) \text{ meV} \]

• It also validated “advantages of using KamLAND”, and the last item of scalability is on-going.

• KamLAND-Zen 800 will start in a few month with a target sensitivity of 40 meV.

• KamLAND2-Zen aims at sensitivity below 20 meV, adopting HQE-PMT, Winston Cone, LAB-LS, new electronics with BLR, PEN-MIB, and maybe high pressure xenon loading.

• R&D for KL2-Zen to launch around 2027 is going well.
Thank you!