Future prospects for the CUPID Experiment

T. O’Donnell
Center for Neutrino Physics
Virginia Tech

DBD 2018 - Oct 23 2018
Outline

• CUPID Goal: Probing the inverted hierarchy
• CUORE: Status for TeO$_2$ bolometers
• Progress of enriched 100Mo bolometers
• Prospects for enriched 130Te bolometers
• CUPID Collaboration forming
Goals for CUPID

- CUPID: CUore Upgrade with Particle ID
- Fully probe the inverted hierarchy of neutrino masses
- Baseline target isotope is 100Mo embedded in LiMoO4 scintillating bolometers
- Viable alternative is 130Te embedded in TeO2 instrumented with advanced cryogenic light detectors

<table>
<thead>
<tr>
<th>Isotope</th>
<th>BI (c/kev/kg/yr)</th>
<th>T1/2 sensitivity (90% C.L)</th>
<th>mbb (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Mo</td>
<td><10^{-4}</td>
<td>2x10^{27}</td>
<td>9-15</td>
</tr>
<tr>
<td>130 Te</td>
<td><10^{-4}</td>
<td>5x10^{27}</td>
<td>6-28</td>
</tr>
</tbody>
</table>

At DNP see:
EN.00009:
Li2MoO4 for 0 decay search in CUPID - The Physics case and current status
B. Schmidt
CUORE - reminder

- Array of 988 $^{nat}\text{TeO}_2$ bolometers (750kg)
- Operated as thermal detectors ($T \sim 10\text{mK}$)
- Target isotope ^{130}Te (206kg)
- Q-value: 2527.5 keV

13 floors per tower 19 towers in total
CUORE Cryogenics

- Capable of cooling detector payload down to 7mK
- Demonstrates it is practical to operate tonne-scale detector at mK temperatures!

Not shown: Superinsulation (SI)
CUORE results

$0\nu\beta\beta$ search PRL 120 132501 (2018)

$\beta \beta$ measurement (in preparation)

$2\nu\beta\beta$ measurement (in preparation)

$0\nu\beta\beta$ search PRL 120 132501 (2018)

See L.A. Winslow’s talk

$\beta \beta$ measurement (in preparation)

$2\nu\beta\beta$ measurement (in preparation)

$T^{1/2} > 1.5 \times 10^{25}$ yr (90% C.L.)

BI = $(1.4 \pm 0.2) \times 10^{-2}$ cnts/keV · kg · yr

Effective resolution (FWHM) @Qbb: 7.7 keV

$T^{2\nu}_{1/2} = (7.9 \pm 0.1 \text{(stat)} \pm 0.2 \text{(syst.)}) \times 10^{20}$ yr

At DNP see EN.00007: Neutrinoless Double Beta Decay And Other Rare Event Searches With CUORE D. Speller, Oct 25

At DNP see MN.00007: CUORE Measurement of Two-Neutrino Double-Beta Decay (C. Davis, Oct 27 3.30pm)
Interpretation of 0vbb search

• The combined 90% C.L. limit is

\[T_{1/2}^{0\nu\beta\beta} > 1.5 \times 10^{25} \text{ y} \]

\[m_{\beta\beta} < 110 - 520 \text{ meV} \]

Projected CUORE Sensitivity

• CUORE sensitivity (5yrs livetime)

\[T_{1/2}^{0\nu\beta\beta} = 9.0 \times 10^{25} \text{ y} \]

\[m_{\beta\beta} < 50 - 200 \text{ meV} \]

NME:
JHEP02 (2013) 025
Prospects to explore the inverted hierarchy

- Requires half-life sensitivity on the order of 10^{27} years!
- To do this with 250~500 kg of isotope in a reasonable time (10 y) requires background free experiment ($b < 10^{-4} \text{c/kev/kg/y}$)
CUORE Background budget ROI @ 2528 keV

CUORE-0 Bkg Model

HPGe & NAA

Fluxes at LNGS

Current CUORE Bkg ~0.01 c/keV/kg/y
CUORE Background budget ROI @ 2528 keV

CUORE-0 Bkg Model

HPGe & NAA

Fluxes at LNGS

TeO₂: natural radioactivity
CuNOSV: natural radioactivity
CuNOSV: cosmogenic activation
TeO₂: cosmogenic activation
CuOFE: natural radioactivity
RomanPb: natural radioactivity
ModernPb: natural radioactivity
SI: natural radioactivity
Rods and 300KFlan: natural radioactivity

Environmental μ
Environmental n
Environmental γ

1E-06 1E-05 1E-04 1E-03

counts/keV/kg/y

90%CL limit
• Value

Goal for CUPID ~ 10⁻⁴ c/keV/kg/yr
Background from surface alphas are the dominant source.
CUORE Background budget ROI @ 2528 keV

CUORE-0 Bkg Model

HPGe & NAA

Fluxes at LNGS

CUORE data will help quantify backgrounds that are poorly constrained by radio assay measurements
CUORE Background budget ROI @ 2528 keV

Active cosmic ray veto required (or a deeper site)

Improved materials selection required for CUPID with 130Te

For higher Q-value isotope (e.g. 100Mo @ 3034keV) β/γ background is decreased by ~20 fold
CUPID: CUORE Upgrade with Particle ID

- Dominant background is degraded alphas from surface contamination
- Leverage other energy loss mechanisms to tag particle type

![Graph showing discrimination between alpha, beta/gamma, and nuclear recoils](image)

- More rejection power needed: 99.9% alpha background suppression. Light detector R&D for better resolution.
- Background free search.

![Diagram of a bolometer](image)

- Maturing R&D and demonstrator efforts
 - Enriched Li\(^{100}\)MoO\(_4\) scintillating bolometers
 - Enriched Zn\(^{82}\)Se scintillating bolometers
 - Enriched \(^{130}\)TeO\(_2\) bolometer with Cherenkov readout
CUPID: Li$_{2}^{100}$MoO$_{4}$

- 100Mo is an excellent choice for scintillating bolometer 0vbb search
- Q-value: 3034 keV
- Natural abundance: 9.7%, enrichment to ~97% is demonstrated
- Seminal R&D from Lumineu project
- Possible to grow large, high purity, high optical quality LMO crystals and operate as scintillating bolometers
- Vendors capable of growing high-quality LMO identified in Russia, US, China and France

0.2 kg LMO scintillating bolometer

Main crystal, Ge wafer cryogenic light detector readout by NTDs

CUPID: Li$_2^{100}$MoO$_4$

- LMO alpha/beta discrimination using heat and light signals

Figs. Courtesy of Andrea Giuliani, CSNSM, Saclay
CUPID: Li$_{2}^{100}$MoO$_{4}$

- Energy resolution demonstrated to be 5~6 keV FWHM
- Current limits on internal radio purity are compatible with requirements

<table>
<thead>
<tr>
<th>Detector’s ID</th>
<th>Crystal’s mass (g)</th>
<th>FWHM (keV) at 2615 keV</th>
<th>LY$_{\gamma(\beta)}$ (keV/MeV)</th>
<th>$\alpha/\gamma(\beta)$ Separation above 2.5 MeV</th>
<th>Activity (µBq/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>enrLMO-1</td>
<td>186</td>
<td>5.8(6)</td>
<td>0.41</td>
<td>9σ</td>
<td>≤4</td>
</tr>
<tr>
<td>enrLMO-2</td>
<td>204</td>
<td>5.7(6)</td>
<td>0.38</td>
<td>9σ</td>
<td>≤6</td>
</tr>
<tr>
<td>enrLMO-3</td>
<td>213</td>
<td>5.5(5)</td>
<td>0.73</td>
<td>14σ</td>
<td>≤3</td>
</tr>
<tr>
<td>enrLMO-4</td>
<td>207</td>
<td>5.7(6)</td>
<td>0.74</td>
<td>14σ</td>
<td>≤5</td>
</tr>
</tbody>
</table>

$Q_{\beta\beta}^{100}$Mo at LSM (17 mK) and LNGS (12 mK), respectively. The performed analysis is similar to the one described in detail in [7].
CUPID: $\text{Li}_2^{100}\text{MoO}_4$

- BB-decay results from Lumineu

$T^{2\nu}_{1/2} = (6.92 \pm 0.06\text{(stat)} \pm 0.36\text{(syst.)}) \times 10^{18}\text{yr}$

$T^{0\nu2\beta}_{1/2} \geq 0.7 \times 10^{23}\text{ yr}$

CUPID-Mo Demonstrators

- **Phase 1**: Array of 20 enriched 0.2 kg Li$_2^{100}$MoO$_4$ crystals operated a Lumineu-style scintillating bolometers (LMO)
- Deployed in the Edelweiss cryogenic setup at Modane lab
- Goal is an extended run to confirm LMO operation and reach higher-sensitivity on internal radio purity
- Currently running at Modane Underground lab
- **Phase 2**: Additional 20 modules to be deployed in the CUPID-0 R&D cryostat at LNGS

Figs courtesy of CUPID-Mo collaboration
CUPID-Mo Demonstrators

- Expected sensitivity of the CUPID-Mo program
- Assumptions
 - $BI = 1 \text{ count/(keV/ton} \times \text{yr)}$ in 10 keV window around Q-value

<table>
<thead>
<tr>
<th>CUPID-0/Mo configuration</th>
<th>Exposure (kg×yr of 100Mo)</th>
<th>$\lim T_{1/2}^{0\nu\beta\beta}$ (yr)</th>
<th>$\lim \langle m_{\beta\beta} \rangle$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 20×0.5 crystal×yr</td>
<td>1.2</td>
<td>1.3×10^{24}</td>
<td>0.33–0.56</td>
</tr>
<tr>
<td>(2) 20×1.5 crystal×yr</td>
<td>3.5</td>
<td>4.0×10^{24}</td>
<td>0.19–0.32</td>
</tr>
<tr>
<td>(3) 40×3.0 crystal×yr</td>
<td>14</td>
<td>1.5×10^{25}</td>
<td>0.10–0.17</td>
</tr>
</tbody>
</table>

At DNP see:
EN.00009:
Li2MoO4 for 0 decay search in CUPID - The Physics case and current status
B. Schmidt

FN.00009
Background projections for CUPID
G. Benato
CUPID: Zn82Se

- 82Se embedded in ZnSe scintillating bolometers
- Q-value: 2998 keV
- CUPID-0 Se demonstrator now operating at LNGS

See L. M. Pattivina’s talk

- 95% enriched Zn82Se bolometers
- 26 bolometers (24 enr + 2 nat) arranged in 5 towers
 - 10.5 kg of ZnSe
 - 5.17 kg of 82Se \rightarrow $^{N}_{\beta\beta} = 3.8 \times 10^{25}$ $\beta\beta$ nuclei
- LD: Ge wafer operated as bolometer

- Copper structure (ElectroToughPitch)
- PTFE holders
- Light Reflector (VIKUITI 3M)
CUPID: Zn82Se

- Light detector: Ge-wafer bolometer readout with NTDs

![Diagram of the CUPID-0 detector system]

Calibration scatter plot of a ZnSe crystal

See L. M. Pattivina’s talk

CUPID-0 is the first array of scintillating bolometers for the investigation of 82Se $\nu^{\beta\beta}$

This design has the main goal of

- Minimize mass of passive materials

$\nu^{\beta\beta}$ Q-value 2998 keV

- 95% enriched 82Se bolometers

- 26 bolometers (24 enr + 2 nat) arranged in 5 towers

- 10.5 kg of ZnSe

- 82Se $\nu^{\beta\beta}$ nuclei: 3.8×10^{25}

- LD: Ge wafer operated as bolometer

- Simplest modular detector

- Copper structure (ElectroToughPitch)

- PTFE holders

- Light Reflector (VIKUITI 3M)
Background data selection

UEML Simultaneous fit over the datasets

Slide from L. M. Pattivina’s talk

Exposure: $5.46 \text{ kg} \cdot \text{y of ZnSe}$

Energy resolution in ROI: $23.0 \pm 0.6 \text{ keV}$

Total signal efficiency: $75 \pm 2\%$

$m_{\beta\beta} < (290-596)^1 \text{ meV}$

$T_{1/2}^{(82\text{Se} \rightarrow 82\text{Kr})} > 4.0 \cdot 10^{24} \text{ yr @ 90C.L.}$

NEMO3 measurement $3.6 \cdot 10^{23} \text{ yr @ 90C.L.}$

CUPID: TeO2 prospects

- As proposed in EPJC65 (2010) 359 exploit Cherenkov emission to tag beta/gamma events vs alpha events

- Challenge: very low light emission (~100 eV) vs a few keV of light in scintillating bolometers

Expected (theory) Cherenkov Yield

- Ge cryogenic light detector

 EPJC 75 12 (2015)

At DNP see DM.00009:
Measurements of Light Emissions in TeO2 Crystals
(R. Huang Oct 25 11.00 am)

• EPJC 65 (2010) 359
CUPID: TeO2 prospects

• R&D to discriminate electron/alpha events based on Cherenkov light emission in TeO2 is yielding positive results

• Low threshold bolometric light detectors are steadily improving, exploiting Neganov-Luke amplification

• Light detector thermometry can be done with standard NTD

• Other light detector readout schemes TES and KIDs are being investigated

Fig. Courtesy of Andrea Giuliani, CSNSM, Saclay
CUPID: TeO2 prospects

- R&D to discriminate electron/alpha events based on Cherenkov light emission in TeO2 is yielding positive results

- Low threshold bolometric light detectors are steadily improving exploiting Neganov-Luke amplification

- 99.9% alpha rejection with >95% signal acceptance in CUORE-sized crystal
R&D on 130Te enrichment

- Test run at LNGS with 2x 435g enriched 130TeO2 crystals

<table>
<thead>
<tr>
<th>Isotope</th>
<th>ICP-MS [%]</th>
<th>Certification [%]</th>
<th>Natural [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>130Te</td>
<td>92.26</td>
<td>92.13</td>
<td>34.08</td>
</tr>
<tr>
<td>128Te</td>
<td>7.71</td>
<td>7.28</td>
<td>31.74</td>
</tr>
<tr>
<td>126Te</td>
<td>0.015</td>
<td>0.02</td>
<td>18.84</td>
</tr>
<tr>
<td>125Te</td>
<td>0.006</td>
<td>0.01</td>
<td>7.07</td>
</tr>
<tr>
<td>124Te</td>
<td>0.0005</td>
<td>≤ 0.005</td>
<td>4.74</td>
</tr>
</tbody>
</table>

bolometric performance

Det 1

<table>
<thead>
<tr>
<th>Energy res. (FWHM @2615 keV)</th>
<th>Det 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5 keV</td>
<td>4.3 keV</td>
</tr>
</tbody>
</table>

alpha rejection for 95% signal acceptance

98.21% 99.99%
R&D on 130Te enrichment

• Ongoing R&D item to purify crystal materials 130Te (zone refining)

• Larger exposure demonstrator under development

<table>
<thead>
<tr>
<th>Chain Nuclide</th>
<th>Det 1 uBq/kg</th>
<th>Det 2 uBq/kg</th>
<th>CUORE uBq/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>232Th</td>
<td><4.3</td>
<td><4.8</td>
<td><0.8</td>
</tr>
<tr>
<td>238U</td>
<td>8 +/- 3</td>
<td>15 +/- 4</td>
<td><0.6</td>
</tr>
</tbody>
</table>
Bolometer readout based on NTD thermistors have been demonstrated to meet the technical requirements for alpha discrimination for CUPID.

There is active R&D to explore alternative temperature readout schemes.

CUPID-US group exploring Transition edge sensor (TES) readout.

CALDER project in Europe exploring kinetic inductance detectors (KIDS).

Advanced light detector technologies benefit both the 100Mo and 130Te strategies.
TES readout for CUPID

- Demonstration with tungsten TES (developed in CRESST)
- 3.7σ separation of α events from β/γ with 98% signal acceptance
- W-TES are difficult to produce reproducibly

Superconducting bilayers

- Ongoing R&D activity to use TES sensors fabricated from Ir/Au, Ir/Pt bilayers
- Bilayers with low Tc demonstrated

At DNP see

DM.00008:
Development of cryogenic optical-photon detectors with Ir/Pt-based transition edge sensors for CUPID
V. Singh (Oct 25 8.45 am)

EN.00008:
Application of Cryogenic TES based Light Detectors for CUPID
B. Welliver (Oct 25 8.45pm)
• CUPID: CUore Upgrade with Particle ID
• Fully probe the inverted hierarchy of neutrino masses
• Baseline target isotope is 100Mo embedded in LiMoO4 scintillating bolometers
• Viable alternative is 130Te embedded in TeO2 instrumented with advanced cryogenic light detectors

<table>
<thead>
<tr>
<th>Element</th>
<th>BI (c/kev/kg/yr)</th>
<th>T1/2 sensitivity (90% C.L)</th>
<th>mbb (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100Mo</td>
<td><10^{-4}</td>
<td>2x10^{27}</td>
<td>9-15</td>
</tr>
<tr>
<td>130Te</td>
<td><10^{-4}</td>
<td>5x10^{27}</td>
<td>6-28</td>
</tr>
</tbody>
</table>

At DNP see:
EN.00009: Li2MoO4 for 0 decay search in CUPID - The Physics case and current status
B. Schmidt
Conclusions

- CUORE (750 kg TeO2 array) shows it is possible to operate a large array of macro bolometers at ultra-low cryogenic temperatures.

- CUORE will continue to push sensitivity to 0vbb decay of 130Te and measure intrinsic background levels in the cryogenic system.

- There is active R&D program in the US and Europe to realize a next generation experiment with the background, resolution and target mass required to probe the inverted hierarchy.

- Small (~20 detector) scintillating bolometer arrays have made tremendous progress (CUPID-0 Se, Lumineu).

- Lithium molybdate scintillating bolometers enriched in 100Mo is the baseline choice for CUPID:
 - excellent alpha suppression
 - excellent energy resolution
 - high Q-value (above most environmental beta/gamma background)
 - good radio purity with improved limits expected from CUPID-Mo demonstrator

- Emergence of low noise cryogenic light detectors make enriched 130TeO2 bolometers a viable option for CUPID although lower Q-value requires additional care in materials selection for some cryogenic components.
A CUPID interest group meeting is planned aimed at forming the CUPID collaboration and developing the conceptual design report

- When: November 19 and 20 2018
- Where: Gran Sasso Laboratory
- Contacts: cupid_kickoff@mit.edu
- More information: http://cupid.mit.edu/

Open to any one interested in collaborating
Acknowledgements

CUORE Funding Support

CUORE

Massachusetts Institute of Technology

INFN

Sapienza

University of Rome

University of California

South Carolina

UCLA

Berkeley Lab

Virginia Tech

Invent the Future

Yale

CNEN

University of CASSINO e DEL Lazio

DEGLI STUDI

DI MILANO

BICOCCA

Universita' di Firenze

INFN

Lawrence Livermore National Laboratory
Acknowledgements

CUPID-Mo
CUORE Upgrade with Particle Identification in Molybdenum
Overview of experimental setup

- Y beam
- Main Support Plate
- Cryostat
- H_3BO_3 panels
- Polyethylene
- Screw jacks
- Movable platform
- Minus-K isolators
- Support columns
- External lead shield (~70 t)
- Concrete walls
- Seismic isolators
The CUORE cryostat

- Cryogen-free cryostat
- Fast Cooling System (4He gas) down to ~50K
- 5 pulse tubes down to ~4K
- Dilution refrigerator to operating temperature ~10 mK
- Nominal cooling power: 3 μW @ 10mK
- Cryostat total mass ~30 tons
- Mass to be cooled < 4K: ~15 tons
- Mass to be cooled < 50 mK: ~3 tons (Pb, Cu and TeO$_2$)