Isoscalar and Orbital Contribution in M1 Transitions of 54 Fe

T. Adachi,^a A.D. Bacher,^b G.P.A. Berg,^b T. Black,^b C.C Foster,^b H. Fujita,^a Y. Fujita,^a J. Jänecke,^c K. Katori,^a W. Lozowski,^b D.A. Robers,^c Y. Shimbara,^a E.J. Stephenson,^b H. Ueno,^a T. Yamanaka,^d and M. Yosoi,^e

^a Dept. Phys., Osaka University, Toyonaka, Osaka 560-0043
^b Indiana University Cyclotron Facility, Bloomington, Indiana 47408, USA
^c Dept. Phys., University of Michigan, Ann Arbor, Michigan 48109 USA
^d Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan
^e Dept. Phys., Kyoto University, Sakyo, Kyoto 606-8224

The $\Delta L=0$, $\Delta S=1$ states observed in inelastic scatterings are called M1 states. To observe M1 states, (e,e') and (p,p') reactions are used. If experimental conditions are selected, corresponding M1 states are observed; in the (e,e') in the backward angle experiments, while in the (p,p') in the 0° experiment at intermediate incident energies. The electro-magnetic M1 operator, which works in the (e,e'), contains ℓ , σ , $\ell\tau$ and $\sigma\tau$ terms. On the other hand, in the (p,p') reactions $\sigma\tau$ operator is dominant in the excitation of M1 states.

Isospin quantum number of the 54 Fe ground state is $T_0=1$. In the 54 Fe(e,e') reaction, if the isospin number of the excited state is T=1, all terms of the M1 operator contribute in the M1 transition. If that of the excited state is T=2, $\ell\tau$ and $\sigma\tau$ terms contribute. On the other hand, in the 54 Fe(p,p') reaction, the contribution of the $\sigma\tau$ term is dominant. Transition strengths observed in the 54 Fe(e,e') and 54 Fe(p,p') reactions can be different due to the different characteristics of active operators.

Since the coefficient for the IV spin term is the largest in a usual case, the reduced M1 transition strength studied in electron scattering, i.e., B(M1), can be written [1, 2],

$$B(M1) \propto \left(g_s^{\mathrm{IV}} M(\sigma \tau)\right)^2 \left| 1 + \frac{g_\ell^{\mathrm{IV}} M(\ell \tau) - g^{\mathrm{IS}} M'(\mathrm{IS})}{g_s^{\mathrm{IV}} M(\sigma \tau)} \right|^2.$$
 (1)

where the value $|1+\{g_{\ell}^{\text{IV}}M(\ell\tau)-g^{\text{IS}}M'(\text{IS})\}/g_s^{\text{IV}}M(\sigma\tau)|^2$ in Eq. (1) can be larger or smaller than unity depending on the constructive or destructive contributions of the IS and $\ell\tau$ terms.

On the other hand, the reduced transition strength $B_{\rm IE}(M1)$ in the (p,p') consists of only $\sigma\tau$ matrix element. Following the definition of the B(GT) value for the Gamow-Teller transition, we define $B_{\rm IE}(M1)$ as [1],

$$B_{\rm IE}(M1) = \frac{1}{2J_i + 1} \frac{1}{2} \frac{C_{M1}^2}{2T_f + 1} [M(\sigma\tau)]^2.$$
 (2)

Since in Eqs. (1) and (2), the $M(\sigma\tau)$ is common, the IS and IV orbital contributions can be discussed by comparing B(M1) and $B_{\rm IE}(M1)$.

The B(M1) strength distribution from $^{54}{\rm Fe}(e,e')$ reaction [4 and $^{54}{\rm Fe}(p,p')$ experiment spectrum at 0° performed at IUCF [4] are shown in Figs. 1(a) and (b), respectively. By comparing these two figures, corresponding M1 states are identified in the region of $E_x = 8.0 \sim 12.0$ MeV. The $B_{\rm IE}(M1)$ value for each state observed in the (p,p') was determined using the 0° cross section.

In order to study the contributions of IS and IV orbital terms interfering with the IV spin term in the B(M1) value, we introduce a ratio [2]

$$R_{\rm ISO} = \frac{B(M1)}{B_{\rm IE}(M1)}. (3)$$