Ground-state Three-quark Potential in SU(3) Lattice QCD
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The strong interaction in hadrons and nuclei is fundamentally governed by Quantum
ChromoDynamics(QCD). For the deep understanding of the strong interaction, it would be
desirable to extract strong interaction directly from QCD. However it still remains difficult to
construct hadron physics based on QCD. For an important and fundamental example, it has
not been successful to derive the quark-antiquark(QQ) potential, which is directly responsible
for the meson properties. This is due to the strong coupling nature in the infrared region of
QCD. For the infrared physics, we cannot apply the perturbative calculations, and hence the
non-perturbative analysis is needed.

Lately, the lattice QCD calculation has been accepted as a powerful and reliable method
for the non-perturbative analysis. For instance, the QQ potential (VQQ)haS been well studied

using lattice QCDI[1, 2, 4], and has been found to be the form Vg = _Aaq +0oqqr + Cqas

T
where r denotes the distance between quark and antiquark. This potential can be split

into two parts, the perturbative one-gluon-exchange term A%Q and the non-perturbative
confinement term oggr. The linear confinement term in the long distance region supports
the flux-tube picture. The one-dimensional flux-tube which has the tension oq links the
quark and antiquark, and consequently the potential is proportional to r. The flux-tube
picture is supported by the Regge trajectory of hadrons, the analysis of heavy quarkonia
spectrum and the strong-coupling expansion of QCD. However, there is almost no reliable
formula to represent the three-quark (3Q) potential (V3q) based on QCD. The three-quark
potential, directly responsible for the baryon structure and properties[3], has been treated
phenomenologically more than 20 years. We carry out the detailed study of the 3Q potential
using SU(3) lattice at 8 = 5.7 (lattice unit ¢ ~ 0.2 fm), 8 = 5.8 (a ~ 0.14 fm) and § = 6.0
(a ~ 0.1 fm)[1, 2].

Theoretically, 3QQ potential is considered to be described by a sum of the perturbative
two-body term and the non-perturbative confinement term and to take a form as

1
Vaq = —43q ) 1|
i< Ut

+ 03QLmin + C3q, (1)

where Ly, denotes the minimal linking length of the flux-tube. Denoting the three side
length of the 3Q triangle by a,b and ¢ as shown in Fig.1, Ly, is explicitly represented[1, 2]
as

=

Lin = %(a2+b2+02)—I—§\/(a+b+c)(—a+b+c)(a—b+c)(a+b—c) . (2)

when any angle of the 3Q triangle does not exceed 27 /3. With one angle larger than 27/3,
Lyin = (@ 4+ b+ ¢) — max(a, b, c).
The static 3QQ potential can be obtained from the 3Q Wilson loop. The 3Q Wilson

loop is a color current in the four-dimensional Fuclidean space-time, which is defined in a
gauge-invariant manner as Wsq = 31€qpcEatre s U Use, Uy = Pexplig Jr, dztAu(z)} €



SU(3). Here, P denotes the path-ordered product along the path Ty in Fig.2. The 3Q
potential is extracted as Va3q = — limr_, % In(Wsq). Practically, there are some difficulties
in obtaining ground-state potential. We take enough large T to reduce the excited-state
contaminations. However, (W3q) also decreases exponentially and we cannot obtain the
numerical signals. The previous studies of the 3Q potential using lattice QCD contained
these contaminations and were not reliable. To avoid this difficulties, we adopt the smearing
technique to enhance the ground-state overlap|[1, 2, 4].

Figure 1: The flux-tube configuration of the Figure 2: The 3Q Wilson loop.I" denotes the
3Q system. path linking O and O'.

In the following table, we show the fitted parameters, which are determined by fitting
the lattice data by the form in Eq.1. By this best fit parameters, 3Q potential data can be
reproduced with accuracy better than a few %.

o (GeV/fm) A C (lattice unit)
3Q (8=5.7) 0.832(15) 0.1331( 66) 0.9182(213)
QQ (8=5.7) 0.890(25) 0.2793(116) 0.6203(161)
3Q (8 =5.8) 0.818( 6) 0.1304( 17) 0.9326( 53)
QQ (B=5.8) 0.890(21) 0.2580(159) 0.6081(182)
3Q (8 =6.0) 0.811( 7) 0.1363( 11) 0.9590( 35)
QQ (8= 6.0) 0.890(12) 0.2768( 24) 0.6374( 30)

We proved remarkable features numerically based on QCD[1, 2].
e Perturbative color factor at the short distance (Asq ~ %AQQ)
e Universality of the string tension (03q ~ 0qq)

e Consistency of the constant C' in the di-quark limit (C3q ~ %CQQ)
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