

4.1 OPERATION OF THE RCNP CYCLOTRON

S.Ninomiya, K.Sato, T.Saito, H.Tamura, S.Mine^a, H.Kaneko^a, Z.Taisei^a,

Y.Ihata^a, H.Gotoh, H.Yana^a, Y.Ohe^a, H.Hikake^a, Y.Kotaka^a and Y.Sasaki^a

Research Center for Nuclear Physics, Ibaraki, Osaka 567-0047, Japan

^a Sumi Accelerator Services (SAS)

Summary of the performance of the AVF cyclotron and the Ring cyclotron in the fiscal year 2000 is given in Table 1. The WN beam line, which was involved in the previous annual report[1] was removed and a new beam line (WS) was constructed in the spring in 2000[2]. About 99 % of beam time was carried out by using the Ring cyclotron. We had ~130 hours of unscheduled shutdown in 2000, which is mainly due to the following severe machine troubles:

- 1) burnout of the resistor in the power supply for the screen grid for the flat-topping cavity in the Ring cyclotron. A similar trouble was carried out in the fiscal year of 1999.
- 2) breakdown of the vacuum of the main chamber in the Ring cyclotron due to breakdown of the thin foil in the ES course.
- 3) trouble of voltage-adjusting system in the main cavity #3 of the Ring cyclotron.

We succeeded to repair the cyclotron complex within 30 hours in each trouble in 2000.

Table 1: A summary of operational statistics

Beam time	Beam time for experiments	I 30 ^h 10 ^{min}
	WS 2416 ^h 10 ^{min}	
	N0 77 ^h 10 ^{min}	
	EN 68 ^h 00 ^{min}	
	ES 289 ^h 10 ^{min}	
	total 2880 ^h 40 ^{min}	
	Tuning of beam for experiments	505 ^h 10 ^{min}
	Preparation for Acceleration and Developments	1829 ^h 40 ^{min}
	Total	5215 ^h 30 ^{min}
Maintenance		1625 ^h 10 ^{min}
Shutdown	Scheduled shutdown and holidays	1791 ^h 30 ^{min}
	Unscheduled shutdown	128 ^h 20 ^{min}
Total		8760 ^h 00 ^{min}

The beam usage of the cyclotrons is summarized in Table 2. Mainly, high-quality light-ion beams, such as proton, deuteron and helium beams, have been required. In 2000, more than 90 % of the beam time was carried out for the light ions. High-quality beams in momentum spread have been strongly required in the RCNP and were obtained for some ions. For example, 55 keV and 62 keV of the energy resolutions were obtained for 300 MeV and 392 MeV proton beams, respectively. The ratio of the RF voltage of the flat-topping cavity to those of the main cavities was empirically found out as one of the key parameters. Until 2000, the RF voltage of the flat-topping cavity was operated as a settled parameter for simplicity. However, careful search of the RF voltage of the flat-topping cavity by 1 kV is found out to be necessary to obtain extremely high-quality beams. The voltage ratio of the flat-topping cavity to the main ones adopted before seems a little bit higher in comparison to that obtained in 2000. This discrepancy may come from ambiguity of pick-up ratio of a probe to the real voltage of the cavity.

In addition, we would like to stress an importance of an operation of the AVF cyclotron for extremely high-quality beams. It was found that when quasi single-turn structure of beams was observed in the AVF cyclotron, quality of beams from the Ring cyclotron was quite well. Empirical method to obtain quasi single-turn structure of beams was found out for some ions. It should be noted that the time needed to adjust the operational parameter of the AVF cyclotron becomes longer than before for extremely high-quality beams because of lack of beam diagnostic probe in the cyclotron.

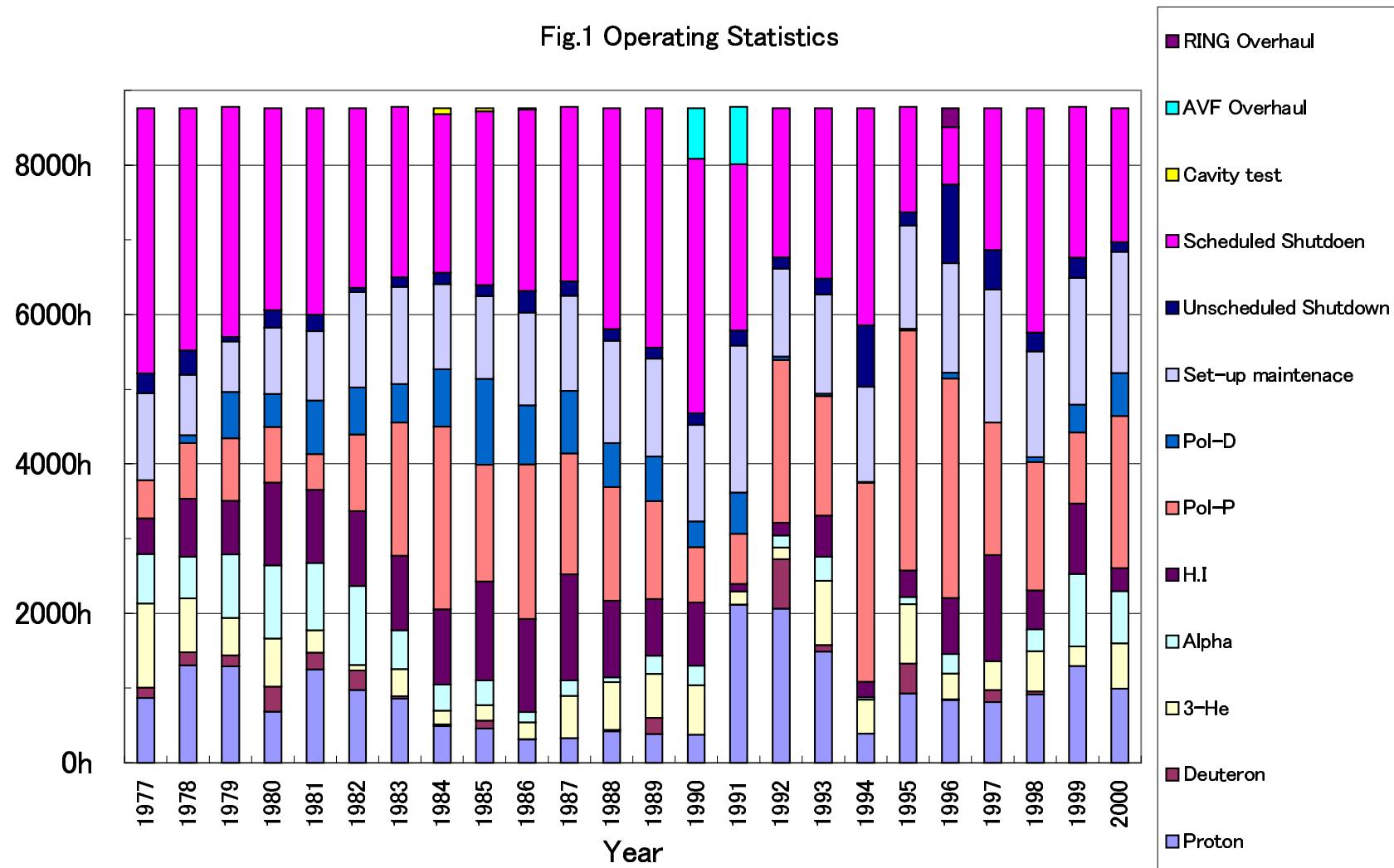
The new WS beam line can accomplish both lateral and angular dispersion matching between the beam line and the Grand Raiden spectrometer. In this dispersive mode, the energy resolution of ~ 13.3 keV in FWHM for 295 MeV proton was already reported[2]. Even in dispersive mode, an energy resolution of the beam itself is much important practically[3].

Table 2: A summary of the beam usage of the RCNP cyclotrons

Particles	
Proton	989h00min
Pol. Proton	2038h00min
Pol. Deutron	573h10min
^3He	611h40min
Alpha	698h40min
^7Li	152h00min
^{14}N	118h00min
^{16}O	35h00min
Total	5215h30min

It was found that the magnetic field strongly correlate with quality of beams reported elsewhere[3]. The magnetic field for a cyclotron can be controlled by adjusting cooling water temperature. In the RCNP, since many kinds of ions with various energies are accelerated, water-cooling system for the coils should have some degree of freedom. In addition, such system should be effectively isolated from outer circumstance for the stable cyclotron operation day and night for all seasons.

A cooling system of the AVF cyclotron was improved in 2000. Main purposes are 1) to control the water temperature for the main coil independently and 2) to stabilize the water temperature both for the main coil and the trim coils by the order of 0.1 degree independently of outer circumstance. For the former, an additional water pump and heat exchanger was installed for the main coil. For the latter, a three-way valve was newly installed nearby the cooling tower in order to cancel out influence on outer disturbance. A new buffer tank for chilling water was also installed.


Effective feedback from measuring magnetic field with an NMR probe is also necessary for the RCNP cyclotron complex. In 2000, a one-turn coil called fine tuning coil (FT coil) was installed to the AVF cyclotron. Typical current is $\gg 10$ A. Current control of a few tens mA leads to control the magnetic field on the order of 10^{-7} . By improvement of the cooling system for the AVF cyclotron and installation of the FT coil to the AVF cyclotron, to obtain high-quality beams in a long term becomes easier than before.

The operation statistics from 1977 are shown in fig. 1. The scheduled shutdown decreased and the beam time increased a little bit as compared with the last fiscal year, respectively.

References

- [1] e.g. S. Nishimura et al., RCNP Annual Report 1999 p.107.
- [2] T. Wakasa et al., RCNP Annual Report 1999 p.95
- [3] S. Nishimura et al., elsewhere in this report.

Fig.1 Operating Statistics

