Isospin Symmetry Structure of GT and M1 States in A = 54 Nuclei

T. Adachi^a, A.D. Bacher^b, G.P.A. Berg^{b,c}, T. Black^b, C.C Foster^b, H. Fujimura^c, H. Fujita^a, Y. Fujita^a, K. Hatanaka^c, J. Jänecke^d, J. Kamiya^c, K. Katori^e, T. Kawabata^c,

Y. Kitamuta^c, W. Lozowski^b, D.A. Robers^d, Y. Shimbara^a, Y. Shimizu^c, E.J. Stephenson^b,

M. Uchida^f, H. Ueno^e, T. Yamanaka^c, M. Yoshifuku^a and M. Yosoi^f

^aDept. Phys., Osaka University, Toyonaka, Osaka 560-0043

^bIndiana University Cyclotron Facility, Bloomington, Indiana 47408, USA

^cResearch Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan

^dDept. Phys., University of Michigan, Ann Arbor, Michigan 48109 USA

^eRIKEN, Wako Saitama 351-0198, Japan

^fDept. Phys., Kyoto University, Sakyo,Kyoto 606-8224

Gamow-Teller (GT) states are characterized by the quantum numbers of $\Delta L = 0$, $\Delta S = 1$ and $\Delta T = 1$. They are observed in charge exchange (CE) reactions. We did ⁵⁴Fe(³He, t)⁵⁴Co reaction. The ⁵⁴Fe has $T_z = +1$, where T_z is the z component of isospin quantum number T. The T value of the ⁵⁴Fe ground state is $T_0 = 1$. Allowed T values of GT states in ⁵⁴Co are 0, 1 and 2, because T_z of ⁵⁴Co is 0.

The states which are analogous to GT states and observed in inelastic scatterings (IE) are called M1 states. Since the ⁵⁴Fe ground state has $T_0 = 1$, allowed T values of M1 states in ⁵⁴Fe are 1 and 2. By comparing GT states excited by the ⁵⁴Fe(³He, t) reaction and M1 states excited by the ⁵⁴Fe(p, p') reaction, the analogous structure of 1⁺ states in ⁵⁴Co and ⁵⁴Fe can be studied.

In hadron reactions at intermediate energies and at 0°, it is known that $\sigma\tau$ interaction is dominant [1] and GT and M1 states with $\Delta L = 0$ nature are excited prominently. There is a good proportionality between cross sections and transition strengths of GT and M1 states [2], where the relevant isospin Clebsh-Gordan (CG) coefficients in IE and CE reactions are different. For analog GT and M1 states, the ratio of CG coefficients is 1:1 for the transitions to T = 1 states, while it is 1:3 to T = 2 states. If we normalize the strengths by T = 1 states, M1 states with T = 2 are enhanced. Therefore, isospin T of these states can be identified based on the difference of CG coefficients depending on T of states [3]. Since T = 0 states are observed only in ⁵⁴Co spectrum, T = 0 states can be identified by comparing two spectra.

In order to study the analogous structure and to identify T, the 'level-by-level' comparison of analogous M1 and GT states is needed. The 'level-by-level' comparison was difficult because of insufficient resolution in (p, n) reaction and difficulty of 0° experiment in (p, p')reaction. In the ⁵⁴Fe(³He, t) reaction at an incident energy 140 MeV/u performed at RCNP, a good resolution of 35keV was achieved by using a new beam line WS course [4] and Grand Raiden spectrometer [5] and applying the *dispersion matching* [6,7]. The ⁵⁴Fe(p, p') experiment was performed at IUCF by using K600 spectrometer [8]. The *dispersion matching technique* allowed a good resolution of 35 keV.

The energy spectra from ${}^{54}\text{Fe}({}^{3}\text{He}, t)$ and ${}^{54}\text{Fe}(p, p')$ reactions are shown in Figs. 1(a) and (b). From the comparison of Figs. 1(a) and (b), good correspondence of peaks can be seen in the region above $E_x = 8.3$ MeV. Good correspondence of states suggests that isospin symmetry of A = 54 was good even at this highly excited region although the final nuclei are different. The states which was observed only in ${}^{54}\text{Co}$, are the T = 0 states. Those M1 and GT states for which analog states are observed have isospin values either T = 1 or T = 2. Obtained ratios of yields for analog states are shown in Fig. 2. The ratio of 10.5 MeV states, which were suggested to be T = 2 [9], was normalized to 3. The ratio of states are divided into two groups. The groups of states in the $8.3 \sim 10.0$ MeV region in ${}^{54}\text{Fe}({}^{3}\text{He}, t)$ spectrum show the ratio of about unity. On the other hand, the states above 10.0 MeV show ratios between two or four. The predicted ratios from CG coefficients are 1 and 3 for T = 1 and T = 2 states, respectively. It is suggested that the states in the first group is of T = 1 and those in the second group is of T = 2. The T = 2 states are distributed in higher excited energy region compared to T = 1 states.

Figure 1: Energy spectrum for $E_x = 8 \sim 12 \text{MeV}$: (a) ${}^{54}\text{Fe}({}^{3}\text{He}, t)$ reaction obtained from RCNP. : (b) ${}^{54}\text{Fe}(p, p')$ reaction obtained from IUCF.

Figure 2: Experimentally obtained ratios between 54 Fe $({}^{3}$ He, t) yields and 54 Fe(p, p') yields for analog states. The ratio is shown as a function of excitation energy in the 54 Fe $({}^{3}$ He, t) spectrum.

References

- [1] W.G. Love and M.A. Franey, Phys. Rev. C24 (1981) 1073.
- [2] T.N. Taddeuchi et.al., Phys. Rev. A469 (1987) 125.
- [3] H. Fujita et.al., Proc. Int. Conf. "Spin2000", Osaka, Japan, 16-21 Oct. 2000, AIP Conf. Proc.570, p.614.
- [4] T. Wakasa et.al, Nucl. Inst. and Meth. in Phys. Res. A482 (2002) 79.
- [5] M. Fujiwara et.al, Nucl. Inst. and Meth. in Phys. Res. A422 (1999) 484.
- [6] Y. Fujita et.al, Nucl. Inst. and Meth. in Phys. Res. **B126** (1997) 274.
- [7] H. Fujita et.al, Nucl. Inst. and Meth. in Phys. Res. A484 (2002) 17.
- [8] C.C. Foster and G.P.A. Berg, IUCF Sci. and Tech. Report 1988-1989 p.193.
- [9] C. Djalali et.al., Phys. Rev. A410 (1983) 399.