The experiment of $\gamma A \rightarrow \pi^0 \pi^0 X$ reaction at SPring-8

T.Matsumura^{1,2}, H.Kohri¹, T.Hotta¹, T.Nakano¹, T.Mibe^{1,2}, R.G.T.Zegers¹, N.Muramatsu², T.Ishikawa³, M.Miyabe³, M.Niiyama³, M.Sumihama^{4,2}, H.Nakamura⁵, Y.Sugaya⁵, H.Kawai⁶, T.Ooba⁶, Y.Shiino⁶, P.M.Shagin⁷, K.Hicks⁸, C.Rangacharyulu⁹, S.Daté¹⁰, Y.Ohashi¹⁰, T.Yorita¹⁰, Y.Tajima¹¹, H.Y.Yoshida¹¹, D.Oshuev¹², J.K.Ahn¹³, J.Kasagi¹⁴, T.Kinoshita¹⁴, T.Nakabayashi¹⁴, H.Yamazaki¹⁴, and H.Shimizu¹⁴

¹Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan ²Advanced Science Research Center, Japan Atomic Energy Research Institute,

Tokai, Ibaragi 319-1195, Japan

³Depertment of Physics, Kyoto University, Kyoto 606-8502, Japan

⁴Depertment of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

⁵Laboratory of Nuclear Studies, Osaka University, Toyonaka, Osaka 560-0043, Japan

 6 Graduate School of Science and Technology, Chiba University, Inage, Chiba 263 – 8522, Japan

⁷Department of Physics and Astronomy, University of Minnesota, Minneapolis ,MN 55455 USA

⁸Depertment of Physics, Ohio University, Athens, Ohio 45701, USA

⁹Depertment of Physics and Engineering Physics, University of Saskatchewan, Saskatoon SK S7N 5E2, Canada

¹⁰Japan Syncrotron Radiation Research Institute, Sayou, Hyogo 679-5143, Japan

¹¹Depertment of Physics, Yamagata University, Kojirakawa, Yamagata 990-8560, Japan

¹²Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

¹³Depertment of Physics, Pusan National University, Pusan 609-735, Korea

¹⁴Laboratory of Nuclear Science, Tohoku University, Taihaku, Sendai 982-0826, Japan

By studying the π - π correlations from decay of I=J=0 state in the nuclear medium new insight in hadron physics can be gained since it is related to the scalar iso-scalar σ meson. The σ meson is the chiral partner of the π meson and its mass and width are expected to be ~600 MeV and ~500 MeV, respectively. Because of its large width, there is no clear evidence for the existence of the σ meson experimentally. According to Ref.[1], the σ meson corresponds to an amplitude fluctuation of the quark-antiquark condensate ($\langle \bar{q}q \rangle$) in the QCD vacuum. Recent theoretical works have predicted that chiral symmetry would be restored at high density and/or high temperature. Hatsuda *et al.* reported that chiral symmetry can be partially restored even in the case of normal nuclear densities due to the $\langle \bar{q}q \rangle$ softening[1]. They predict that as a result the σ -meson mass distribution in the nuclear medium shows an enhancement near the 2π threshold. The characteristic enhancement of the σ mass in normal nuclear matter near the 2π threshold could enable the experimental observation of the σ meson.

Recently, two experimental results for pion-induced 2π production off nuclear targets have been reported by the CHAOS[2, 3] and the Crystal Ball[4] collaboration. The CHAOS collaboration measured the $\pi^+\pi^-$ invariant mass distribution in the $\pi^+A \rightarrow \pi^+\pi^-X$ reaction $(p_{\pi^+} = 399 \text{ MeV}/c)$. The Crystal Ball collaboration performed measurements of the $\pi^0\pi^0$ invariant mass in the $\pi^-A \rightarrow \pi^0\pi^0X$ reaction $(p_{\pi^-} = 408 \text{ MeV}/c)$.

Using a photon beam instead of a pion beam has the advantage that the entire nuclear volume is probed. Therefore, one can effectively study higher nuclear densities. Studying the $\pi^0\pi^0$ decay channel is preferable over the $\pi^+\pi^-$ channel in this case, because for the latter a strong background from decay of the ρ^0 is expected. A series of experiments to study the $\gamma A \rightarrow \pi^0 \pi^0 X$ reaction have been performed at SPring-8.

Figure 1: The setup for the experiment. A tagged photon beam generated at 70m upstream from the target is injected on to a nuclear target.

Figure 2: Preliminary reconstructed 2γ invariant mass distribution with a CH₂ target. This plot is obtained after subtraction of the empty-target contribution

Figure 1 shows the setup of the experiment. Multi photons coming from $\pi^0\pi^0$ decay are detected in an electro-magnetic calorimeter, consisting of 252 modules of lead scintillating fiber (Lead/SCIFI) blocks. The calorimeter was set up at the LEPS beam line at SPring-8. Photons of an energy between 1.5 and 2.4 GeV are produced by backward compton scattering of laser photons off electrons in the SPring-8 storage ring[5]. The average intensity obtained was 5×10^5 photons per second. CH₂(50 mm), C(40 mm), Cu(3 mm), and W(0.7 mm) were used as targets.

Figure 2 shows the reconstructed 2γ invariant-mass distribution obtained with a CH₂ target after subtraction of the empty-target contribution. In this plot, π^0 and η meson production events are observed. In the 4γ -cluster events, $\pi^0\pi^0$ events are also clearly identified. To obtain the cross sections for the $\pi^0\pi^0$ production, further analysis is in progress.

Acknowledgements

This work was supported in part by the Grant-in-Aid for Scientific Research No. 1440071 from the Ministry of Education and Science of Japan.

References

- [1] T.Hatsuda et al. Phys. Rev. Lett. 82, 2840 (1999)
- [2] F.Bonutti et al. Phys. Rev. Lett. 77, 603 (1996)
- [3] F.Bonutti et al. Phys. Rev. C 60, 018201 (1999)
- [4] A.Starostin et al. Phys. Rev. Lett. 85, 5539 (2000)
- [5] T.Nakano et al. Nucl. Phys. A 684, 71c (2001)