Absolute normalization of the differential cross section of the $p d$ elastic scattering at 250 MeV

Y. Shimizu, K. Hatanaka, Y. Sakemi, T. Wakasa, H.P. Yoshida, J. Kamiya, K. Fujita, N. Sakamoto, H. Sakai ${ }^{a}$, A. Tamii ${ }^{a}$, K. Sekiguchi ${ }^{a}$, K. Yako ${ }^{a}$, Y. Maeda ${ }^{a}$, T. Noro ${ }^{b}$, and K. Sagara ${ }^{b}$
Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan
${ }^{a}$ Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
${ }^{b}$ Department of Physics, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan

Recently, large progress has been made in the study of the three-nucleon (3N) system both experimentally and theoretically. The set of data is being significantly enriched for cross section and spin observables in the elastic nucleon-deuteron scattering and the breakup process at proton energies lower than $200 \mathrm{MeV}[1,2,3,4]$. Theoretical formulation of 3 N scattering based on modern nucleon-nucleon $(N N)$ forces has matured in recent years, and computationally accurate solutions of the 3 N Faddeev equation can be achieved [5].

At RCNP, we measured angular distributions of the differential cross section of the pd elastic scattering at 250 MeV [6]. We used deuterated polyethylene $\left(\mathrm{CD}_{2}\right)$ foils with a thickness of 24.3 and $51.7 \mathrm{mg} / \mathrm{cm}^{2}$ as deuteron targets. Target thickness has an uncertainty of about 10%. It is essential to get precise absolute cross sections for comparison with Faddeev calculations. Then we performed measurements by using a gaseous target system (see Fig. 1) in order to normalize cross sections taken with the solid CD_{2} target. The gaseous target consisted of a cylinder of 40 mm in diameter made of $200 \mu \mathrm{~m}$ thick aluminum. The absolute gas pressure was continuously monitored by a barometer during measurements. The target cell was kept at room temperature and the temperature of the cell wall was measured during the experiment. The target cell was mounted on a target ladder, enabling quick change between either a solid target or a gaseous target. Spectra with filled and empty cells were measured to determine background contributions from the aluminum wall. A double slit system was used to define the target volume and the solid angle of the Grand Raiden spectrometer. The opening of the slit was 8 mrad and 10 mrad in the horizontal and vertical plane, respectively. The effective target thickness and the solid angle were estimated by Monte Carlo simulations. In addition, a measurement was performed with hydrogen gas to check the system.

Figure 1: Gaseous target system mouted on the target ladder.

Figure 2 shows the measured cross section at 25.5° of the $p p$ elastic scattering by open circle. The experimental datum is consistent within 3% with the value calulated by the phase-shift analysis program SAID [7]. Figure 3 shows the cross sections of the pd elastic scattering independently measured at c.m. angles of $40^{\circ}, 60^{\circ}$ and 95°. Experimental data are compared with results of Faddeev calculations by H. Kamada [8] using charge dependent Bonn potential with and without Tucson-Melbourne (TM) [9] 3NF. Previous cross sections measured with solid CD_{2} targets are normalized by using the present results.

Figure 2: The differential cross section in $p p$ elastic scattering at $E_{p}=250 \mathrm{MeV}$ using H_{2} gaseous target (open circle). The solid line shows the calculations with the program code SAID.

Figure 3: The differential cross section in $p d$ elastic scattering at $E_{p}=250 \mathrm{MeV}$ using D_{2} gaseous target (open circles). The solid and dashed lines are calcurations with the CD-Bonn + TM 3NF and CD-Bonn only, respectively.

References

[1] N. Sakamoto et al., Phys. Lett. B367, 60 (1996).
[2] H. Rohdje β et al., Phys. Rev. C 57, 2111 (1998).
[3] E.J. Stephenson et al., Phys. Rev. C 60, 061001 (1999).
[4] H. Sakai et al., Phys. Rev. Lett. 84, 5288 (2000).
[5] W. Glöckle et al., Phys. Rep. 274, 107 (1996).
[6] D. Hirooka et al., in RCNP Annual Report 2000, p1.
[7] R.A. Arndt and L.D. Roper, Scattering Analysis Interactive Dial-In Program (SAID), phase-shift solution SP98, Virginia Polytechnic Institute and State University (unpublished); see also Phys. Rev. C 56, 3005 (1997), and references therein.
[8] H. Kamada, private communication.
[9] S.A. Coon and W. Glöckle, Phys. Rev. C 23, 1790 (1981).

