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Various exact solutions are known of the classical gauge �eld equations in (3+1)- and
(2+1)-dimensional space-time with or without Higgs �elds, demonstrating nontrivial topo-
logical properties (see, e.g., [1]) and chaotic behavior (see, e.g., [2] { [4]). We consider here a
generalization of the plane-wave solutions, found earlier in the d = 3 + 1-case (see [5] { [7]),
to the case of a (2+1)-dimensional gauge �eld theory with a topological Chern-Simons term
and discuss an important case of spontaneous symmetry breaking in the CS-Georgi-Glashow
model [8]. The dynamics of a system of coupled gauge and Higgs �elds in this model is
investigated in the general case, where fairly large values of the energy are admitted and, in
contrast to earlier works, no assumptions are made that the system is near a stable solution
(near the \minimum" critical point of the e�ective potential). We demonstrate that the dy-
namics of 3-d YM �elds with a CS topological mass interacting with Higgs �elds is described
by solutions that, generally speaking, are not regular, but rather obtain ergodic properties.

1. The 3-dimensional SU(2) gauge �eld Lagrangian with a Chern-Simons term can be
written as follows
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� is the gauge �eld tensor. The last term in (1) is the

CS term for the gauge �eld topological mass �.
We seek solutions as functions of time only, according to the following ansatz Aa

� =
Æa�fa(t); A

�a = g�afa(t); f1 = � �
2g ; f2 = f3 = f(t); where a = 1; 2; 3; � = 1; 2; 3 (x1 = t; x2 =

x; x3 = y); g�� = diag(+;�;�); and no summation over a is assumed (this case formally
corresponds to a mechanical system).

The corresponding equations of motion were integrated to give the following solution [8]:
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where cn(x; k) is the elliptic Jacobi cosine function of the argument x and the module k.

This solution is periodical with the period T = 4K(k)=(�
4

16
+ 2Eg2) 14 ; where K(x) is the full

elliptic integral of the �rst kind.
The solution (2) describes a nonlinear standing wave. By applying a Lorentz boost

x0� = a��(~v)x� , kx = k0x0, with k00 = M
; k0i = Mvi
; (
 = (1 � v2)�1=2), we obtain non-

linear propagating waves with the �nite mass M � (�
4

16
+ 2Eg2) 14 . As expected, the e�ective

mass includes both the energy density of the solution and the topological mass of the gauge
�eld. We expect that further investigations of realistic �eld con�gurations of this type should



concentrate on the search for possible non-abelian solutions that describe localized �eld con-
�gurations with a �nite energy at rest.

2. Including a Higgs �eld contribution leads to a D=3 Georgi-Glashow model with the
CS term (\CS-Georgi-Glashow model")
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where Lg is the gauge �eld Lagrangian (1), and �a(a = 1; 2; 3) is the scalar Higgs �eld in the
adjoint representation (D��

a = @� + g�abcAb
��

c). We again seek solutions that depend only
on the time with the above ansatz for Aa

�(t): f1 6= f2 = f3 = f(t), and the following for the
Higgs �eld �1 = �(t);�2 = �3 = 0.

We have numerically analyzed the behavior of the e�ective mechanical system with coor-
dinates �; f and the Lagrangian [8]

L = _f2 � �2

4
f2 � g2

2
f4 +

_�2

2
+
m2

2
�2 � �

�4

4
� g2f2�2 = L0 � g2f2�2 (4)

with the last term as a perturbation. For the system with the unperturbed Lagrangian L0

all trajectories are either periodical or quasi-periodical. In order to describe the role of the
perturbation, the KAM-theorem can be applied. To examine the trajectories in detail, we
considered intersections of trajectories and the plane f = 0 under the condition f 0 > 0.
Plotting the intersection points in the so called Poincar�e surfaces of intersection, we can
study the character of motion for the mechanical system equivalent to our interacting gauge
and Higgs �elds for di�erent values of energy E . For comparatively low energies, well below
the \saddle" point, all the trajectories form closed curves, hence, according to KAM-theorem,
practically the entire phase space consists of toruses, which corresponds to quasiperiodical
motion. For higher energies and larger perturbations the situation is completely di�erent:
there arise regions of ergodic behavior (the intersection points cover densely a �nite area). For
still higher energies the motion of the system again becomes more and more stabilized. Near
the saddle point the character of motion changes, corresponding to the symmetry breaking
in the Lagrangian. The motion becomes more unstable and its stochastic character more
pronounced when the energy is closer to the saddle point. It is well known that the Yang-
Mills �eld system is not exactly solvable. We con�rm this conclusion for the case of a 3-d
gauge �eld model with a topological CS term and an additional interaction with a dynamical
Higgs �eld. Detailed analysis shows, however, that the presence of the CS topological mass
in the 3-d case is conducive to the restoration of symmetry and to stabilizing the system.
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