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The axial coupling constant gA of the nucleon is one of fundamental quantities of the
nucleon; experimentally, it is gA = 1:25. Sometimes, the fact that gA is close to unity is
considered as an evidence of partially conserved axial vector current (PCAC), and hence it
would become one in the limit that the axial current is conserved. This, however, is not
correct, and gA takes any value, as in the non-linear sigma model. Even in the linear sigma
model, gA can be arbitrary if higher derivative terms are added.

The arbitrariness of gA is related to the fact that chiral symmetry is broken sponta-
neously [1]. Particles are classi�ed only in terms of isospin (
avor) and it is not necessary to
refer to the full chiral symmetry including axial symmetry. Instead, the axial symmetry is
realized non-linearly including pion �elds and their covariant derivatives.

Now, in QCD, it is postulated that quarks are in linear representations of chiral sym-
metry. Since hadrons are their composite states, it is natural to consider that particles are
classi�ed as linear representations of chiral symmetry. In fact, consideration based on lin-
ear representations was initiated by Weinberg prior to QCD, where he derived commutation
relations as consistency conditions among scattering amplitudes. The amplitudes that are
computed using a low energy chiral lagrangian behave badly for large momenta, which can
be �xed by the consistency condition. The idea is similar to the Adler-Weisberger sum rule
where current commutators are applied in the dispersion theory. The two methods are closely
related, since the dispersion theory is based on analytic properties of scattering amplitudes
and maintains correct large momentum behavior.

In this report, we construct several solutions of the Weinberg's consistency conditions
which are essentially the chiral algebra where nucleons are given as linear representations
of chiral symmetry. The original derivation of the Weinberg seems convenient, since the
algebraic relation is given in terms of physical axial charge of the nucleon.

By considering forward pion-nucleon scattering and imposing correct large momentum
behavior for the sum of the three dominant diagrams as shown in Fig. 1, it was shown that
commutation relations among the pion-nucleon coupling matrices Xa and isospin charges T a

are derived:h
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The nucleons appear as linear representations j�i which are the bases of the matrix elements
(T a)��; (X

a)��; � � �.
By sandwiching these relations with physical states and saturating the intermediate states,

we can solve for the matrix elements (Xa)��, which are related to the axial charges of the
nucleons. Detailed calculations are presented in ref. [2], but here we give essential results:

1. For a fundamental representation of chiral symmetry, (1=2; 0)� (0; 1=2), gA = 1. This
explains the value of gA in the linear sigma model, when there is no higher order
derivative terms. The latter terms introduces higher dimensional representations for
the nucleon.
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Figure 1: Contact and Born diagrams for the pion-nucleon scatterings.

2. For (1; 1=2)� (1=2; 1), gA = 5=3. This explains the value in the non-relativistic quark
model where the nucleon and the delta are in the same multiplet.

3. For large-Nc, we can consider a representation

((Nc + 1)=4; (Nc� 1)=4)� ((Nc � 1)=4; (Nc+ 1)=4) ; (2)

giving gA = (Nc + 2)=3 as expected from the large-Nc analysis.

4. One can also extend the representation to the mirror one and their mixing with ordinary
one [3]: cos �((1=2; 0)� (0; 1=2))� sin �((0; 1=2)� (1=2; 0)). In this case,

gA =

 
cos 2� � sin 2�
� sin 2� � cos 2�

!
: (3)

We have shown that the algebraic constraint due to Weinberg can determine the value of
gA for a given representation of chiral symmetry of the nucleon. This o�ers di�erent nature
of nucleon structure. Among several possibilities, mixing of delta and mirror representations
seems interesting for further investigations.
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