Binding energy of the ${ }^{3} \mathrm{He}^{4} \mathrm{He}_{2}$ trimer within the hard-core Faddeev approach

E. Kolganova ${ }^{a, b}$, Y. K. Ho^{a}, and A. K. Motovilov ${ }^{b}$
${ }^{a}$ Institute of Atomic and Molecular Sciences, Academia Sinica, P.O.Box 23-166, Taipei, Taiwan 10764, ROC
${ }^{b}$ Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

There is a great number of experimental and theoretical studies of the ${ }^{4} \mathrm{He}$ three-atomic system. The non-symmetric system ${ }^{3} \mathrm{He}^{4} \mathrm{He}_{2}$ found comparatively little attention. We can only mention the recent works [1]-[3] where the ${ }^{3} \mathrm{He}^{4} \mathrm{He}_{2}$ trimers were treated alongside with small ${ }^{4} \mathrm{He}$ clusters. Until now only the bound states of the ${ }^{3} \mathrm{He}^{4} \mathrm{He}_{2}$ system have been studied numerically. There are still no scattering calculations reported for this system.

Being a more light particle than ${ }^{4} \mathrm{He}$, the ${ }^{3} \mathrm{He}$ atom supports no bound state with the ${ }^{4} \mathrm{He}$ counterpart and no ${ }^{3} \mathrm{He}$ dimer exists. Thus, the ${ }^{3} \mathrm{He}^{4} \mathrm{He}_{2}$ is even a more loosely bound system than the ${ }^{4} \mathrm{He}$ trimer. According to the hyperspherical adiabatic calculations of [1,2] and Monte-Carlo investigation of [3] the realistic He-He potentials such as LM2M2 [4] and TTY [5] support only one bound state of the ${ }^{3} \mathrm{He}^{4} \mathrm{He}_{2}$ trimer with the energy of the order of $10-15 \mathrm{mK}$.

The present work [6] represents rather a first step in an extension of our numerical approach [7]-[9] to the case of three-body systems including particles with different masses. Like in [7]-[9] we use a hard-core version of the Faddeev differential equations and apply it to the ${ }^{3} \mathrm{He}^{4} \mathrm{He}_{2}$ threeatomic system. Using these equations we calculate the binding energy of the ${ }^{3} \mathrm{He}^{4} \mathrm{He}_{2}$ trimer with the LM2M2 and TTY potentials. In the nearest future we plan not only to continue our study of the ${ }^{3} \mathrm{He}^{4} \mathrm{He}_{2}$ bound state but also to perform calculations of the scattering of a ${ }^{3} \mathrm{He}$ atom off a ${ }^{4} \mathrm{He}_{2}$ dimer. In [6] we only outline the method employed and report our first results for the binding energy of the ${ }^{3} \mathrm{He}^{4} \mathrm{He}_{2}$ system.

References

[1] B. D. Esry, C. D. Lin, and C. H. Greene, Phys. Rev. A 54 (1996) 394.
[2] E. Nielsen, D. V. Fedorov, and A. S. Jensen, J. Phys. B 31 (1998) 4085.
[3] D. Bressani, M. Zavaglia, M. Mella, and G. Moros, J. Chem. Phys. bf 112 (2001) 717.
[4] R. A. Aziz and M. J. Slaman, J. Chem. Phys. 94 (1991) 8047.
[5] K. T. Tang, J. P. Toennies, and C. L. Yiu, Phys. Rev. Lett. 74 (1995) 1546.
[6] E. A.Kolganova and A. K. Motovilov, Czech. J. Phys. 52 (2002), C649.
[7] E. A.Kolganova and A. K. Motovilov, Phys. Atom. Nucl. 62 (1999) 1179.
[8] E. A. Kolganova, A. K. Motovilov, and S. A. Sofianos, J. Phys. B 31 (1998) 1279.
[9] A. K. Motovilov, W. Sandhas, S. A. Sofianos, and E. A. Kolganova, Eur. Phys. J. D 13 (2001) 33.

