Super Wide Band Cavity With An All-Pass Network

H.Tamura, S.Ninomiya, *K.Noda and K.Sato

Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan *National Institute of Radiological Sciences (NIRS), Chiba 263-8555, Japan

A tuning-free cavity with a bridged-T type all-pass network has been developed for an ion synchrotron [1][2] as shown in Fig.1. As for the characteristic of this cavity with an all-pass network, output impedance is equal to input one. The sufficient condition values of parameter are as follows

$$Z_2 = \frac{R^2}{2Z_1}, \quad Z_3 = 4Z_1 \tag{1}$$

LC expression as follows

$$L_2 = \frac{C_1 R^2}{2}, \quad C_2 = \frac{2L_1}{R^2}, \quad L_3 = 4L_1, \quad C_3 = \frac{C_1}{4}$$
 (2)

The acceleration voltage of this cavity has the characteristic curve which looks like a band pass filter. Since the circuits of bridged-T type all-pass network are divided low and high pass filter, the values of f_{min} and f_{max} are roughly estimated to $f_{min} \cong R/(4\pi L_1)$, $f_{max} \cong 1/(\pi RC_1)$. The accurate values are as follows

$$f_{\min} = \frac{1}{2\pi\sqrt{L_1C_1}} \{ \sqrt{1 + \frac{L_1}{R^2C_1}} - \frac{1}{R}\sqrt{\frac{L_1}{C_1}} \}$$
(3)

$$f_{\max} = \frac{1}{2\pi\sqrt{L_1C_1}} \{ \sqrt{1 + \frac{L_1}{R^2C_1}} + \frac{1}{R}\sqrt{\frac{L_1}{C_1}} \}$$
(4)

$$f_0 = \frac{1}{2\pi\sqrt{L_1C_1}} \tag{5}$$

Comparing the acceleration gap voltage phase to input phase, a phase difference change continuously between f_{min} and f_{max} from +90 for the -90 degrees as shown in Fig.2.

We selected parameters with values of $L_1 = 16.83 \mu H$, $C_1 = 240 pF$ so that an acceleration gap voltage could generate between 0.1 and 60MHz. Then, this cavity voltage was generated between 0.1 and 32MHz as shown in Fig.3.

 $R = \begin{pmatrix} \theta \\ -10.00 \\$

Fig.1; A bridged-T type all-pass network (Z_1 is basic cavity.)

Fig.2; Low-level RF test results $|V_1/V|$ and phase

Fig.3; Low-level RF test results of the cavity (Source V/ Terminal Resister V_R/ Cavity voltage

The f_{min} value from equation (3) is almost the same as measured 0.1MHz. But, the f_{max} value from (4) is different from measured 32MHz. The parameter L_2 values that it wasn t measured may be wrong. And L_2 value is very little one. As for the measurement of L_1 , C_1 of the circuit parameters, accurate value $L_1 = 15.9 \mu H$ can be calculated from the measurement value by using a Vector Impedance Meter, and C_1 value was adjusted $C_1 = 240 pF$. But, the measurement of the L_2 of the component seems to be very difficult. Then, it influence of the value of f_{max} if the value of L_2 is different from the design value ($L_2=57.9$ nH). The measured L_2 value is less than 362nH. $F_{max}=29.3$ MHz is calculated by $L_2=362$ nH. A frequency band width of accelerator gap voltage is smaller than design value.

This cavity can generate sawtooth-wave rf-field. A sawtooth-wave is suitable for production of short bunched beam compared with a sine wave. A short-bunched beam with 370 ns at FWHM (full width at half maximum) was gotten in using the sawtooth-wave $(500V_{p-p})$, while that with 480 ns in the sine wave $(500V_{p-p})$. As shown in Fig.4, 5 (Horizontal scale is 400 ns/div at f=1.042180MHz.)

Reference

- [1] H.Tamura et al., RCNP Annual Report 2000 p.104
- [2] H.Tamura et al., Procs. of the 12th Symposium on Accelerator Science and Technology,