Tri-nucleon cluster-states in ⁶Li excited by (³He, α) reaction at 450 MeV

S. Nakayama,^a T. Yamagata,^b H. Akimune,^b M. Fujiwara,^{c,d} K. Fushimi,^a M.B. Greenfield,^e

K. Hara,^c K.Y. Hara^b, K. Hashimoto,^c K. Ichihara,^a K. Kawase,^c H. Matsui,^a K. Nakanishi,^c M. Sakama,^f M. Tanaka,^g and M. Yosoi^h

^aDepartment of Physics, University of Tokushima, Tokushima 770-8502, Japan ^bDepartment of Physics, Konan University, Kobe 658-8501, Japan

^cResearch Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan

^dAdvanced Science Research Center, JAERI, Ibaragi 319-1195, Japan

^eDepartment of Physics, International Christian University, Tokyo 113-0033, Japan

^fSchool of Health Sciences, University of Tokushima, Tokushima 770-8509, Japan

^gKobe Tokiwa College, Kobe 654-0838, Japan

^hDepartment of Physics, Kyoto University, Kyoto 606-8224, Japan

Cluster-structures are interesting phenomena in nuclear physics. Alpha-clusters have been proven to exist in light to heavy nuclei. In light nuclei, other clusters are also expected to play an important role in nuclear structure. Exotic molecular-like cluster-structures have been revealed in unstable nuclei [1]. Akimune *et al.* recently obtained evidence for a di-triton molecular resonance in ⁶He [2]. In the A=6 isobaric system, a tri-nucleon molecular-like state is expected to exist from the isospin symmetry. Its existence was suggested experimentally as well as theoretically [3]. Such a state is described as a two-fermion (t and/or ³He) system and is analogous to the two-nucleon system. However, the physics of tri-nucleon cluster-states remains unclear.

The LS-coupling t+³He cluster model in ⁶Li predicted P- and F-unbound states with respect to the t+³He system. Thompson and Tang [4] predicted a P-doublet (¹P and ³P) around $E_x=22$ MeV and a F-doublet (¹F and ³F) around $E_x=29$ MeV by the resonating group method (RGM) calculation. Here, the symbol denotes ^{2S+1}L. Ohkura *et al.* [5], on the other hand, reported the P- and F-doublets around $E_x=17$ and 26 MeV, respectively, with the complex-scaled RGM calculation. In prediction of the tri-nucleon cluster-state in ⁶Li, there is a contradiction in excitation energy for both P- and F-states.

Experimentally, the P- and F-states were reported on the basis of radiative capture reactions, and of the phase shift analysis on the ${}^{3}\text{He}+{}^{3}\text{H}$ elastic scattering data. Concerning the ${}^{3}P$ resonance, there was a serious discrepancy in excitation energy of about 3 MeV [3]. Recently, Akimune *et al.* identified the di-triton resonance at $E_x=18$ MeV in ${}^{6}\text{He}$ by measuring decay-tritons from states excited via the ${}^{6}\text{Li}({}^{7}\text{Li},{}^{7}\text{Be})$ reaction at 65A MeV [2]. A comparison of the data with the RGM calculations for ${}^{6}\text{He}$ [4] suggests that the observed resonance is the ${}^{3}P$ (t+t) cluster-state whose analog cluster-state (t+ ${}^{3}\text{He}$), based upon isospin symmetry, should exist around $E_x = 21$ MeV in ${}^{6}\text{Li}$. Such a state was reported by the ${}^{6}\text{Li}(\gamma,t)$ reaction and also predicted with the RGM calculation by Thompson and Tang [4]. But these results disagree with the complex-scaled RGM calculation by Ohkura *et al.* [5] and analysis of the phase shift on the ${}^{3}\text{He}+{}^{3}\text{H}$ elastic scattering data [6]. Thus the tri-nucleon cluster-state in ${}^{6}\text{Li}$ is experimentally as well as theoretically unproven [3].

A 450-MeV ${}^{3}\text{He}^{2+}$ beam was provided from the Ring Cyclotron of the Research Center for Nuclear Physics, Osaka University. The target used was a self-supporting foil of a separated ⁷Li isotope (99.9 %) with a thickness of 0.5 mg/cm². The target was inclined at 45° to the beam direction in order to reduce the energy loss of the decay-particle in the target.

Figure 1: Singles spectrum for the ${}^{7}\text{Li}({}^{3}\text{He},\alpha){}^{6}\text{Li}$ reaction at 450 MeV and at $\theta_{\alpha} = 0^{\circ}$. A spectrum obtained in coincidence with triton and ${}^{3}\text{He}$ decay-particles is shown by closed circles. Error bars reflect only statistical errors. The symbols of C and O denote peaks due to carbon and oxygen contamination in the target, respectively.

The α -particles were analyzed using the magnetic spectrometer "Grand RAIDEN" [7] set at $\theta_L = -0.5^{\circ}$. Charged decay-particles were detected by 8 sets of Δ E-E Si-telescope which consists of two Si-detectors with 500 μ m and 300 μ m thicknesses. These telescopes were located from $\theta_{\text{decay}} = 90^{\circ}$ to $\theta_{\text{decay}} = 160^{\circ}$ at 10° intervals and about 30 cm apart from the target. An identification of decay-particles was performed by a time of flight (TOF) method. Here triton and ³He particles are not separable.

Figure 1 shows the singles spectrum for the ${}^{7}\text{Li}({}^{3}\text{He},\alpha){}^{6}\text{Li}$ reaction at 450 MeV and at $\theta_{\alpha} = 0^{\circ}$. The well-known states are prominently excited in a low excitation energy region. The low-lying states in ${}^{6}\text{Li}$ are known as cluster-states of $d+\alpha$ [3]. In a high excitation energy region, on the other side, a broad bump was observed around $E_{x}=21$ MeV. The existence of tri-nucleon cluster-states in this excitation region has been discussed. The tri-nucleon cluster-states in ${}^{6}\text{Li}$ were investigated via the ${}^{7}\text{Li}({}^{3}\text{He},\alpha)$ reaction by measuring triton and ${}^{3}\text{He}$ decay-particles in coincidence with α -particles. The coincidence spectrum thus obtained is shown by closed circles in figure 1. Measurements of the angular correlations of decay-particles may be used to determine angular momenta of populated states. The detailed analyses are now in progress.

References

- S. Nakayama *et al.*, Phys. Rev. Lett. 87 (2001) 122502; Prog. Theor. Phys. Suppl. 146 (2002) 603.
- [2] H. Akimune et al., Phys. Rev. C67 (2003) 051302(R)
- [3] D.R. Tilley et al., Nucl. Phys. A708 (2002) 3.
- [4] D.R. Thompson and Y.C. Tang, Nucl. Phys. A106 (1968) 591.
- [5] H. Ohkura, T. Yamada, and K. Ikeda, Prog. Theor. Phys. 94 (1995) 47.
- [6] A. Mondragón, and E. Hernández, Phys. Rev. C 41 (1990) 1975.
- [7] M. Fujiwara et al., Nucl. Instrum. Methods Phys. Res., Sect. A 422 (1999) 484.