Research of shielding effect in MOON by GEANT4

Y. Shichijo^a, H. Ejiri^c, K. Fushimi^a, R. Hazama^b, K. Ichihara^b, M.Nomachi^b, S.Umehara^b, S.Yoshida^b

 ^a Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima, Tokushima 770-8502, Japan
^b Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

^cResearch Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan

MOON (Molybdenum Observatory Of Neutrinos) is a hybrid double beta decay ($\beta\beta$) and solar ν detector with sensitivity to majorana mass of the order of $\langle m_{\nu} \rangle \sim 0.03$ eV as well as capability of charged-current neutrino spectroscopy of low energy solar ν 's down to 168keV. To detect $\beta\beta$ decay and solar ν , it is important for new particle physics beyond the Standard Model (SM)[1][2][3].

The fine localization in time and in space is crucial for reducing background (BG) rates in realistic detectors. To reduce BG effectively, characteristic of BG and shielding materials is needed to understand and to select the best shielding materials and the best location of shielding materials.

In the present work, shielding effect for high energy γ rays and thermal neutrons with various shielding material and thickness were evaluated by GEANT4. And the best selection of shielding material was discussed for MOON.

The BG posed problems are divided into external sources and internal sources. The internal sources are radioactive contaminants (U,Th-chain) in the detector, the external sources are high energy γ rays and thermal neutrons from surrounding material. The high energy γ rays make continuum spectrum of Compton scattering at low energy range. Radioisotopes made by thermal neutrons emit serious BG radiation. In the present work, the shielding effect to external BGs were due to estimated at various energy range for $0\nu\beta\beta$ decay of ¹⁰⁰Mo (3.034MeV) and *pp* neutrino (≤ 225 keV), γ rays of ²⁰⁸Tl (2.614MeV) and γ ray (2.225MeV) emitted by thermal neutron capture of ¹H.

A ^{nat}Ge detector whose dimension was 2inch in diameter and 2inch in length was put at the center of a shield. The shielding material, which was made of Pb or H₂O. Between the shielding material and the detector, air was filled. The out of detector system was filled with air[?]. The radiation sources were γ ray of ²⁰⁸Tl (2.614MeV) and thermal neutron of 0.025eV. These radiations were emitted isotropic in direction from at the point which was 2.1m apart from the center of the detector. the simulation was performed one million events for each condition.

Since the shielding effect changes by a difference of material density, the thickness of the shielding material was normalized by its density in order to compare the shielding effect between Pb and H_2O .

The result of shielding effect for high energy γ rays was analyzed. At γ rays of ²⁰⁸Tl (2.614MeV), Pb and H₂O was found to have the almost the same shielding effect. On the other hand, as it was shown in Fig:1, in the low energy range of *pp* neutrino (\leq 225keV), a remarkable difference of shielding effect between Pb and H₂O was found. Pb was better shielding material than H₂O.

The effect for thermal neutron, the 2.225MeV γ ray due to the neutron capture of ¹H had obviously no effect to the energy range of $0\nu\beta\beta$ decay of ¹⁰⁰Mo (3.034MeV). On the other

Figure 1: The shielding effect for the γ rays of ²⁰⁸Tl (2.614MeV) using Pb (opened circle) and H₂O (closed circle) as shielding material at low energy range(≤ 225 keV).

Figure 2: The shielding effect for thermal neutrons using Pb (opened circle) or H_2O (closed circle) as shielding material at low energy range ($\leq 225 \text{keV}$).

hand, it was shown in Fig:2, at low energy range of pp neutrino (≤ 225 keV), a remarkable difference of shielding effect between Pb and H₂O was found, Pb is better shielding material than H₂O.

In the present work, shielding effect was investigated for a high energy γ ray and a thermal neutron in MOON. As a result, shielding effect for high energy γ rays and thermal neutrons using Pb or H₂O is the almost same around $0\nu\beta\beta$ decay of ¹⁰⁰Mo (3.034MeV). However, the overs effect for high energy γ rays and thermal neutrons using Pb is better than H₂O at low energy range of *pp* neutrino (\leq 225keV). Therefore Pb was found to be the suitable shielding material in MOON.

References

- [1] H.Ejiri, Phys. Rep. **338** (2000) 265.
- [2] H.Ejiri, Nucl. Phys. **B**(Proc. Suppl.)**91** (2001) 255.
- [3] H.Ejiri, Progress in Particle and Nuclear Physics 48(2002) 185.
- Y.Shichijo et al., Proceedings of the 17th Workshop on Radiation Detectors and Their Uses, January 29 (2003), KEK, to be published.