Measurement of the α-decay from the cluster-state at $\mathbf{E}_{x} \sim 10.3 \mathrm{MeV}$ in ${ }^{12} \mathbf{C}$

M. Itoh a, H. Akimune ${ }^{b}$, M. Fujiwara ${ }^{a}$, U. Garg ${ }^{c}$, H. Hashimoto ${ }^{a}$, T. Kawabata ${ }^{d}$, K. Kawase ${ }^{a}$, S. Kishi ${ }^{e}$, T. Murakami ${ }^{e}$, K. Nakanishi ${ }^{a}$, Y. Nakatsugawa ${ }^{e}$, B.K. Nayak c, S. Okumura ${ }^{a}$, H. Sakaguchi ${ }^{e}$, S. Terashima ${ }^{e}$, M. Uchida ${ }^{a}$, Y. Yasuda ${ }^{e}$, M. Yosoi ${ }^{e}$, J. Zenihiro ${ }^{e}$
${ }^{a}$ Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan
${ }^{b}$ Department of Physics, Konan University, Kobe, Hyogo 658-8501, Japan
${ }^{c}$ Physics Department, University of Notre Dame, Notre Dame, IN 46556, USA
${ }^{d}$ Center for Nuclear Study (CNS), the University of Tokyo, Tokyo 113-0033, Japan ${ }^{e}$ Department of Physics, Kyoto University, Kyoto 606-8502, Japan

The ${ }^{12} \mathrm{C}$ nucleus has both structures of the α cluster and of the shell-model-like. In the α cluster model, the 0_{2}^{+}state at $E_{x}=7.65 \mathrm{MeV}$ and theoretical 2_{2}^{+}state are thought to be 3α-molecular states [1]. In the recent theoretical interpretation by Tohsaki and Horiuchi et al. $[2,3]$, this 0_{2}^{+}state can be interpreted as an α-condensation-like state with a new α cluster wave function. According to the $3-\alpha$ RGM calculation by Kamimura [1], the 2_{2}^{+}state should be a 2^{+}member of a β band beginning the $7.654 \mathrm{MeV} 0_{2}^{+}$state. In the calculation of the α-cluster model for ${ }^{12} \mathrm{C}$, treat as the existence of the 2_{2}^{+}state, However, this 2_{2}^{+}state has not been exactly identified by the experimental studies. In Ref. [4], this state has been tentatively assigned to be 0^{+}.

In our previous ${ }^{12} \mathrm{C}\left(\alpha, \alpha^{\prime}\right)$ experiment, we evidenced the existence of this 2_{2}^{+}state at $E_{x} \sim 10$ MeV buried under the broad 0_{3}^{+}state by the multipole decomposition analysis [5]. In this experiment, we measured decay- α particles from $E_{x} \sim 10 \mathrm{MeV}$ states on the ${ }^{12} \mathrm{C}\left(\alpha, \alpha^{\prime}+\alpha^{\prime \prime}\right)$ reaction in order to study the internal structure of these $E_{x} \sim 10 \mathrm{MeV}$ states and also to confirm the J^{π} from the angular correlation of the decay- α particles.

The measurement was performed using the GRAND RAIDEN spectrometer (GR) and the 8 -SSD arrays with $386 \mathrm{MeV} \alpha$ particles. The setting angles of GR were 0° and 4°, where the $L=0$ and $L=2$ cross sections are maximum, respectively. SSDs were mounted at backward angles from 95° to 165° at intervals of 10°. The solid angle of each SSD was 5.96 msr . The thickness was $500 \mu \mathrm{~m}$ with which decay- α particles up to 35 MeV stopped in the SSD.

Figure 1 shows two-dimensional scatter plot of coincidece events for decay- α particles and the energy spectrum of the ${ }^{12} \mathrm{C}\left(\alpha, \alpha^{\prime}\right)$ reaction at 0°. There are two locus for α decay to the gound-state of ${ }^{8} \mathrm{Be}$ and to the first 2^{+}state of ${ }^{8} \mathrm{Be}$, though the first 2^{+}state of ${ }^{8} \mathrm{Be}$ is obscure due to the broad width of the state. Figure 2 shows ${ }^{12} \mathrm{C}\left(\alpha, \alpha^{\prime}\right)$ spectra in coincidence with the α decay to the ground state of ${ }^{8} \mathrm{Be}(\mathrm{a})$, and to the first 2^{+}state of ${ }^{8} \mathrm{Be}(\mathrm{b})$. In the region lower than $E_{x}=10 \mathrm{MeV}$, the $E_{x} \operatorname{sim} 10 \mathrm{MeV}$ state seems to decay mainly to the ground state of ${ }^{8} \mathrm{Be}$. On the other hand, in the region upper than 10 MeV , it seems to decay mainly to the first 2^{+}state of ${ }^{8} \mathrm{Be}$. Figures 3 and 4 show angular correlations for the α decay of ${ }^{12} \mathrm{C}$ for the $E_{x} \sim 10 \mathrm{MeV}$ region. Detail analysis is now in progress.

References

[1] M. Kamimura, Nucl. Phys. A351 (1981) 456.
[2] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpeke, Phys. Rev. Lett. 87 (2001) 192501.
[3] Y. Suzuki and M. Takahashi, Phys. Rev. C 65 (2002) 064318.
[4] F. Ajzenberg-Selove, Nucl. Phys. A506 (1990) 1.
[5] M. Itoh et al., Nucl. Phys. A738 (2004) 268.

Figure 1: (a) Two-dimensional scatter plot of coincidence events for α particles. (b) Energy spectrum of the ${ }^{12} \mathrm{C}\left(\alpha, \alpha^{\prime}\right)$ reaction at 0°.

Figure 3: Angular correlation for the α-decay of ${ }^{12} \mathrm{C}^{*}$ to the ground state of the ${ }^{8} \mathrm{Be}$.

Figure 2: ${ }^{12} \mathrm{C}\left(\alpha, \alpha^{\prime}\right)$ spectra in coincidence with decay- α particles.

Figure 4: Angular correlation for the α-decay of ${ }^{12} \mathrm{C}^{*}$ to the first 2^{+}state of the ${ }^{8} \mathrm{Be}$.

