Measurement of the α -decay from the cluster-state at $\mathbf{E}_x \sim 10.3$ MeV in 12 C

M. Itoh^a, H. Akimune^b, M. Fujiwara^a, U. Garg^c, H. Hashimoto^a, T. Kawabata^d,

K. Kawase^a, S. Kishi^e, T. Murakami^e, K. Nakanishi^a, Y. Nakatsugawa^e, B.K. Nayak^c,

S. Okumura^a, H. Sakaguchi^e, S. Terashima^e, M. Uchida^a, Y. Yasuda^e, M. Yosoi^e,

J. Zenihiro e

^aResearch Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan

^bDepartment of Physics, Konan University, Kobe, Hyogo 658-8501, Japan

^cPhysics Department, University of Notre Dame, Notre Dame, IN 46556, USA

^d Center for Nuclear Study (CNS), the University of Tokyo, Tokyo 113-0033, Japan

^eDepartment of Physics, Kyoto University, Kyoto 606-8502, Japan

The ¹²C nucleus has both structures of the α cluster and of the shell-model-like. In the α cluster model, the 0_2^+ state at $E_x=7.65$ MeV and theoretical 2_2^+ state are thought to be 3α -molecular states [1]. In the recent theoretical interpretation by Tohsaki and Horiuchi *et al.* [2, 3], this 0_2^+ state can be interpreted as an α -condensation-like state with a new α cluster wave function. According to the 3- α RGM calculation by Kamimura [1], the 2_2^+ state should be a 2^+ member of a β band beginning the 7.654 MeV 0_2^+ state. In the calculation of the α -cluster model for ¹²C, treat as the existence of the 2_2^+ state, However, this 2_2^+ state has not been exactly identified by the experimental studies. In Ref. [4], this state has been tentatively assigned to be 0^+ .

In our previous ${}^{12}C(\alpha, \alpha')$ experiment, we evidenced the existence of this 2^+_2 state at $E_x \sim 10$ MeV buried under the broad 0^+_3 state by the multipole decomposition analysis [5]. In this experiment, we measured decay- α particles from $E_x \sim 10$ MeV states on the ${}^{12}C(\alpha, \alpha' + \alpha'')$ reaction in order to study the internal structure of these $E_x \sim 10$ MeV states and also to confirm the J^{π} from the angular correlation of the decay- α particles.

The measurement was performed using the GRAND RAIDEN spectrometer (GR) and the 8-SSD arrays with 386 MeV α particles. The setting angles of GR were 0° and 4°, where the L=0 and L=2 cross sections are maximum, respectively. SSDs were mounted at backward angles from 95° to 165° at intervals of 10°. The solid angle of each SSD was 5.96 msr. The thickness was 500 μ m with which decay- α particles up to 35 MeV stopped in the SSD.

Figure 1 shows two-dimensional scatter plot of coincidece events for decay- α particles and the energy spectrum of the ${}^{12}C(\alpha, \alpha')$ reaction at 0°. There are two locus for α decay to the gound-state of ⁸Be and to the first 2⁺ state of ⁸Be, though the first 2⁺ state of ⁸Be is obscure due to the broad width of the state. Figure 2 shows ${}^{12}C(\alpha, \alpha')$ spectra in coincidence with the α decay to the ground state of ⁸Be (a), and to the first 2⁺ state of ⁸Be (b). In the region lower than $E_x=10$ MeV, the $E_x sim10$ MeV state seems to decay mainly to the ground state of ⁸Be. On the other hand, in the region upper than 10 MeV, it seems to decay mainly to the first 2⁺ state of ⁸Be. Figures 3 and 4 show angular correlations for the α decay of ${}^{12}C$ for the $E_x \sim 10$ MeV region. Detail analysis is now in progress.

References

- [1] M. Kamimura, Nucl. Phys. A351 (1981) 456.
- [2] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpeke, Phys. Rev. Lett. 87 (2001) 192501.
- [3] Y. Suzuki and M. Takahashi, Phys. Rev. C 65 (2002) 064318.
- [4] F. Ajzenberg-Selove, Nucl. Phys. A506 (1990) 1.
- [5] M. Itoh et al., Nucl. Phys. A738 (2004) 268.

x 10² 2000 (a)¹²C(α , α ') 1000 0 $(b)^{12}C^* \to {}^8Be^*(2^+) + \alpha$ 500 (preliminary) Counts 250 0 $(c)^{12}C^* \rightarrow {}^8Be (g.s.) + \alpha$ (preliminary) 500 250 0 15 10 17.5 20 12.5 $E_x (^{12}C) (MeV)$

Figure 1: (a) Two-dimensional scatter plot of coincidence events for α particles. (b) Energy spectrum of the ${}^{12}C(\alpha, \alpha')$ reaction at 0° .

Figure 2: ${}^{12}C(\alpha, \alpha')$ spectra in coincidence with decay- α particles.

Figure 3: Angular correlation for the α -decay of ${}^{12}C^*$ to the ground state of the ⁸Be.

Figure 4: Angular correlation for the α -decay of $^{12}C^*$ to the first 2^+ state of the ⁸Be.