Isoscalar and Isovector spin-M1 strengths in ¹¹B

T. Kawabata, H. Akimune^a, H. Fujimura^b, H. Fujita^b, Y. Fujita^c, M. Fujiwara^b, K. Hara^b, K. Y. Hara^a, K. Hatanaka^b, T. Ishikawa^d, M. Itoh^b, J. Kamiya^b, S. Kishi^d, M. Nakamura^d, K. Nakanishi^b, T. Noro^e, H. Sakaguchi^d, Y. Shimbara^b, H. Takeda^d, A. Tamii^b, S. Terashima^d, H. Toyokawa^f, M. Uchida^b, H. Ueno^c, T. Wakasa^e, Y. Yasuda^d, H. P. Yoshida^b and M. Yosoi^d

Center for Nuclear Study, Graduate School of Science, University of Tokyo

^aDepartment of Physics, Konan University

^bResearch Center for Nuclear Physics, Osaka University

^cDepartment of Physics, Osaka University

^dDepartment of Physics, Kyoto University

^eDepartment of Physics, Kyushu University

^fJapan Synchrotron Radiation Research Institute

The M1 transition strengths provide important information on the nuclear structure because they could be a good measure to test theoretical nuclear models. Recently, the M1 transition strengths are of interest from a view of not only the nuclear physics but also neutrino astrophysics because the spin part of the M1 operator is identical with the relevant operators mediate neutrino induced reactions.

Raghavan *et al.* pointed out that the ^{11}B isotope can be used as a possible neutrino detector to investigate stellar processes [1]. High-energy neutrinos from the stellar processes like the proton-proton fusion chain in the sun and the supernova explosions excite low-lying states in ^{11}B and ^{11}C by M1 and Gamow-Teller (GT) transitions via the neutral-current (NC) and charged-current (CC) processes. Such neutrinos can be detected by measuring emitted electrons from the CC reaction and γ rays from the de-excitations of the low-lying states. Since there is an isospin symmetrical relation between the ^{11}B and ^{11}C and both the NC and CC reactions can be measured simultaneously in one experimental setup, the systematic uncertainty in measuring a ratio of the electron-neutrino flux to the entire neutrino flux is expected to be small. Because there is one excess neutron in ^{11}B nucleus, the low-lying states in ^{11}B are excited by both the isovector and isoscalar transitions. Therefore, both the isoscalar and isovector spin-M1 strengths must be measured to estimate the CC and NC cross sections for the neutrino induced reactions. The cross sections of hadronic reactions provide a good measure for the weak interaction response since the relevant operators in the hadronic reactions are identical with those in β -

decay and neutrino capture processes. Thus, we recently measured cross sections for the 11 B(3 He, t) and 11 B(d, d') reactions to determine the isovector and isoscalar spin-M1 strengths in 11 B.

The experiment was performed at Research Center for Nuclear Physics, Osaka University using 450-MeV 3 He and 200-MeV deuteron beams. The measured cross sections were shown in Figs.1 and 2. Since the ground state of 11 B has non zero spin, the cross sections for the 11 B(3 He, 4) and 11 B(4 d, 4) reactions are described by an incoherent sum over the cross section of the different multipole contributions,

$$\frac{d\sigma}{d\Omega} = \sum_{\Delta J} \frac{d\sigma}{d\Omega} (\Delta J).$$

In order to determine the spin-M1 strengths, the cross section for each ΔJ transition must be given to extract the $\Delta J = 1$ contribution.

For the 11 B(3 He, t) analysis, the cross section for the each ΔJ transition was calculated by the distorted wave impulse approximation (DWIA) as seen in Fig. 1. Since the GT strength B(GT) for the ground-state transition is known to be 0.345 ± 0.008 from the β -decay strength, the cross sections for the $\Delta J = 1$ transitions to the excited states in

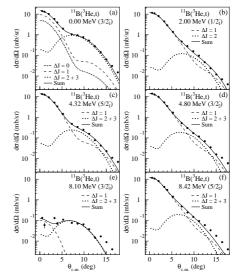


Figure 1: Cross sections for the $^{11}\text{B}(^{3}\text{He},t)$ reactions compared with the DWIA calculation. The dash-dotted, dashed, and dotted curves show $\Delta J = 0$, $\Delta J = 1$, and $\Delta J \geq 2$ contributions, respectively. The solid curves are sums of the all multipole contributions.

¹¹C can be related to the B(GT) values by assuming the linear proportional relation. The GT strengths are easily related to the isovector spin-M1 strength $B(\sigma \tau_z)$ under the assumption that the isospin symmetry is conserved. Although the isospin-symmetry breaking changes this ratio, the variation is usually small. Therefore, the GT strengths obtained from the charge exchange reaction are still useful to study the isovector spin-M1 strengths.

For the ${}^{11}B(d, d')$ analysis, the cross section for each ΔJ transition was determined from the ${}^{12}C(d, d')$ reaction. Since the ground state of ¹²C has a zero spin, transitions to the discrete states in ¹²C are expected to be good references for the angular dependence of the cross sections for certain ΔJ transitions. As shown in Fig. 2, the cross section for the 11 B(d, d') reaction was successfully decomposed into the each ΔJ contributions. Although the 4.44-MeV $(5/2_1^-)$ state can be excited by both the $\Delta J^{\pi} = 1^+$ and 2^+ transitions, the main part of the transition is due to $\Delta J^{\pi} = 2^+$. This result is explained by the fact that the strong coupling between the ground and 4.44-MeV states is expected since the 4.44-MeV state is considered to be a member of the ground-state rotational band. Since the observed $\Delta J^{\pi} = 2^+$ transition strength is much larger than the expected $\Delta J^{\pi}=1^+$ strength, the $\Delta J^{\pi}=1^+$ component of the transition strength can not be reliably extracted for the 4.44-MeV state. The transition strength for the 6.74-MeV $(7/2_1^-)$ state is also dominated by the $\Delta J^{\pi}=2^+$ component, but the $\Delta J^{\pi}=1$ transition to this state is not allowed. The isoscalar spin-M1 strength $B(\sigma)$ for the transition to the 2.12-MeV $(1/2^-_1)$ state is 0.037 ± 0.008 , which is obtained from the γ -decay widths of the mirror states and the B(GT) value [2]. Using this value, the cross section for the $\Delta J = 1$ transitions to the other excited states can be related to the $B(\sigma)$ values. Since the $\Delta J = 1$ cross section for the 4.44-MeV state was not reliably obtained in the (d, d') analysis, the isoscalar spin-M1 strength was determined from the measured B(GT) value and the relative strength of the isoscalar transition to the isovector transition calculated by using the Cohen-Kurath wave functions (CKWF) [3].

The obtained B(GT) ($B(\sigma \tau_z)$) and $B(\sigma)$ values are compared with the shell model predictions using the CKWFs in Fig. 3. The CKWFs reasonably explain the experimental result except the quenching by a factor of 0.5-0.7. The present result will be useful in the measurement of the stellar neutrinos using the NC and CC reactions on ¹¹B.

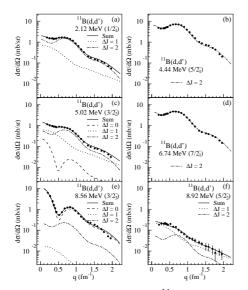


Figure 2: Cross sections for the 11 B(d, d') reactions. The dashed, dotted, and dash-dotted curves show $\Delta J = 0$, 1, and 2 contributions, respectively. The solid curves are sums of the all multipole contributions.

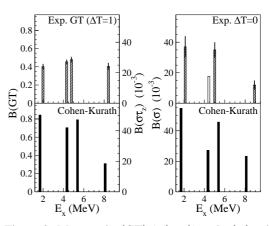


Figure 3: Measured B(GT) ($B(\sigma \tau_z)$) and $B(\sigma)$ values are compared with the shell model predictions using the Cohen-Kurath wave functions [3]. The open bar in the right-upper panel shows the $B(\sigma)$ value for the 4.44-MeV state estimated from B(GT) (see text).

References

- [1] R.S. Raghavan, Sandip Pakvasa, and B.A. Brown, Phys. Rev. Lett. 57, 1801 (1986).
- [2] J. Bernabéu, T. E. O. Ericson, E. Hernández, and J. Ros Ncul. Phys. **B378**, 131 (1992).
- [3] S. Cohen and D. Kurath, Nucl. Phys. **73**, 1 (1965).