Production of the pentaquark exotic baryon Ξ_{5} in $\bar{K} N$ scattering:

$$
\bar{K} N \rightarrow K \Xi_{5} \text { and } \bar{K} N \rightarrow K^{*} \Xi_{5}
$$

Seung-Il Nam, ${ }^{a, b}$ Atsushi Hosaka, ${ }^{a}$ and Hyun-Chul Kim ${ }^{b}$
${ }^{a}$ Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan
${ }^{b}$ Department of Physics and Nuclear physics \mathcal{B} Radiation technology Institute (NuRI), Pusan National University, Busan 609-735, Korea

We investigate the production of the pentaquark exotic baryon $\Xi_{5}[1]$ in the $\bar{K} N \rightarrow K \Xi_{5}$ and $\bar{K} N \rightarrow K^{*} \Xi_{5}$ reactions at the tree level [2]. We consider the both positive- and negativeparities of the Ξ_{5}. The reactions are dominated by the s - and u-channel processes since no strangeness-two meson exists. The Lagrangians for these reactions are written as

$$
\begin{align*}
\mathcal{L}_{K N \Sigma} & =i g_{K N \Sigma} \bar{\Sigma} \gamma_{5} K N+\text { (h.c.) } \\
\mathcal{L}_{K \Sigma \Xi_{5}} & =i g_{K \Sigma \Xi_{5}} \bar{\Xi}_{5} \Gamma_{5} K \Sigma+\text { (h.c.) } \\
\mathcal{L}_{K^{*} N \Sigma} & =g_{K^{*} N \Sigma} \bar{\Sigma} \gamma_{\mu} K^{* \mu} N+\text { (h.c.) } \\
\mathcal{L}_{K^{*} \Sigma \Xi_{5}} & =g_{K^{*} \Sigma \Xi_{5} \bar{\Xi}_{5} \gamma_{\mu} \hat{\Gamma}_{5} K^{* \mu} \Sigma+\text { (h.c.) }} \tag{1}
\end{align*}
$$

where Σ, Ξ_{5}, N, K and K^{*} denote the corresponding fields for the octet Σ, the antidecuplet Ξ_{5}, the nucleon, the pseudo-scalar K meson, and the vector K^{*} meson, respectively. We define $\Gamma_{5}=\gamma_{5}$ for the positive-parity Ξ_{5}, whereas $\Gamma_{5}=\mathbf{1}_{4 \times 4}$ for the negative-parity one. $\hat{\Gamma}_{5}$ is also defined by $\Gamma_{5} \gamma_{5}$ for the vector meson K^{*}. We employ two types of form factors as follows $[3,4]$ for the vertices.

$$
\begin{align*}
F_{1}(x=s, u) & =\frac{\Lambda_{1}^{2}}{\sqrt{\Lambda_{1}^{4}+\left(x-M_{\Sigma}^{2}\right)^{2}}}: \Lambda_{1}=0.85 \mathrm{GeV} \tag{2}\\
F_{2}\left(\vec{q}^{2}\right) & =\frac{\Lambda_{2}^{2}}{\Lambda_{2}^{2}+\left|\vec{q}^{2}\right|}: \Lambda_{2}=0.5 \mathrm{GeV} \tag{3}
\end{align*}
$$

In the numerical calculations, we employ the coupling constants: $g_{K \Sigma \Xi_{5}}=g_{K N \Theta}=$ $3.77(0.53), g_{K * \Sigma \Xi_{5}}=\sqrt{3} g_{K N \Theta}= \pm 6.53(1.89)$ [5] and $g_{K * \Sigma \Xi_{5}}= \pm 0.91$ (0.27) [3] where $g_{K N \Theta}$ is deduced when $\Gamma_{\Theta \rightarrow K N}=15 \mathrm{MeV}$. As for the other coupling constants we employ the new Nijmegen potential $[6]: g_{K N \Sigma}=3.54, g_{K^{*} N \Sigma}=-2.99$. We present the total and differential cross sections for the $\bar{K} N \rightarrow K \Xi_{5}$ process in Fig. 1.

We see that the total cross sections for the negative-parity Ξ_{5} are almost a hundred times smaller than those of positive-parity one. In the present reaction, the interference between the s - and u-channels becomes important in addition to the kinematic effect in the p-wave coupling for the positive-parity (but not in the s-wave for the negative-parity), which is proportional to $\vec{\sigma} \cdot \vec{q}$ enhancing the amplitude at high momentum transfers. We also presents the total and differential cross sections for the $\bar{K} N \rightarrow K^{*} \Xi_{5}$ process in Fig. 2 with F_{1}. In this process, we have uncertainties in the sige of $g_{K^{*} N \Xi_{5}}$ coupling constant. 4

We summarize the numerical results in Table. 1, where we see once again that the total cross sections are generally much larger for the positive-parity Ξ_{5} than for those of the negative-parity one by about a hundred times. This feature would be useful in order to investigate the pentaquark properties in the presently proposed reactions.

Figure 1: Total and differential cross section for the two parities (the left two panels for $P=+1$ and the others for $P=-1)$ of $\bar{K} N \rightarrow K \Xi_{5}$ process with F_{1} and F_{2}.

Figure 2: Total and differential cross section for the two parities (the left two panels for $P=+1$ and the others for $P=-1$) with the form factor F_{1} of $\bar{K} N \rightarrow K^{*} \Xi_{5}$ process. We show the curves due to different signs of the coupling, $g_{K^{*} \Sigma \Xi_{5}}$.

References

[1] C. Alt et al. [NA49 Collaboration], Phys. Rev. Lett. 92, 042003 (2004).
[2] S. I. Nam, A. Hosaka and H. C. Kim, arXiv:hep-ph/0405227.
[3] S. I. Nam, A. Hosaka and H. -Ch. Kim, hep-ph/0402138, to appear in Phys. Rev. D.
[4] W. Liu and C. M. Ko, Phys. Rev. C 68, 045203 (2003).
[5] F. E. Close and J. J. Dudek, Phys. Lett. B 586, 75 (2004)
[6] V. G. J. Stokes and Th. A. Rijken, Phys. Rev. C 59, 3009 (1999)

Reaction	F_{1}	F_{2}	Reaction	F_{1}	F_{2}
$\sigma_{\bar{K} N \rightarrow K \Xi_{5}}(P=+1)$	$2.6 \mu b$	$1.5 \mu b$	$\sigma_{\bar{K} N \rightarrow K^{*} \Xi_{5}}(P=+1)$	$1.6 \mu b$	$\lesssim 2 \mu b$
$\sigma_{\bar{K} N \rightarrow K \Xi_{5}}(P=-1)$	$26 n b$	$12 n b$	$\sigma_{\bar{K} N \rightarrow K^{*} \Xi_{5}}(P=-1)$	$14 n b$	$\lesssim 20 n b$

Table 1: Summary for the average total cross sections in the CM energy region: $2.35 \mathrm{GeV} \leq$ $E_{\mathrm{CM}} \leq 3.35 \mathrm{GeV}$ for $\bar{K} N \rightarrow K \Xi_{5}$ and $2.75 \mathrm{GeV} \leq E_{\mathrm{CM}} \leq 3.75 \mathrm{GeV}$ for $\bar{K} N \rightarrow K^{*} \Xi_{5}$. For K^{*} production with F_{2} form factor used, only the upper values are quoted since the interference suppresses them.

