Production of the pentaquark Θ^+ in np scattering

Seung-Il Nam,^{*a,b*} Atsushi Hosaka,^{*a*} and Hyun-Chul Kim^{*b*}

^aResearch Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan ^bDepartment of Physics and Nuclear physics & Radiation technology Institute (NuRI), Pusan National University, Busan 609-735, Korea

We study the $np \to \Lambda \Theta^+$ and $np \to \Sigma^0 \Theta^+$ processes for both of the positive and negative parities of the Θ^+ at the tree level [1]. Effective Lagrangians can be written as follows,

$$\mathcal{L}_{KNY} = -ig_{KNY}\bar{Y}\gamma_5 K^{\dagger}N,$$

$$\mathcal{L}_{KN\Theta_{\pm}} = -ig_{KN\Theta_{\pm}}\bar{\Theta}_{\pm}\Gamma_5 KN,$$

$$\mathcal{L}_{VNY} = -g_{VNY}\bar{Y}\gamma_{\mu}V^{\mu}N - \frac{g_{VNY}^T}{M_Y + M_N}\bar{Y}\sigma_{\mu\nu}\partial^{\nu}V^{\mu}N,$$

$$\mathcal{L}_{VN\Theta} = -g_{VN\Theta_{\pm}}\bar{\Theta}_{\pm}\gamma_{\mu}\bar{\Gamma}_5 V^{\mu}N - \frac{g_{VN\Theta_{\pm}}^T}{M_{\Theta} + M_N}\bar{\Theta}_{\pm}\sigma_{\mu\nu}\bar{\Gamma}_5\partial^{\nu}V^{\mu}N,$$
(1)

where Y, K, N, Θ , and V stand for the hyperon (Σ^0 and Λ), kaon, nucleon, Θ^+ , and vector meson fields, respectively. In order to take into account different parities for the Θ^+ in the reactions, we introduce $\Gamma_5 = \gamma_5$ for the $\Theta^+_{P=+1}$ and $\Gamma_5 = \mathbf{1}_{4\times 4}$ for the $\Theta^+_{P=-1}$. $\bar{\Gamma}_5$ designates $\Gamma_5\gamma_5$. The isospin factor is included in Y. The $KN\Theta$ coupling constant can be determined, if we know the decay width $\Gamma_{\Theta \to KN}$. If we choose $\Gamma_{\Theta \to KN} = 15 \,\mathrm{MeV}$ together with $M_{\Theta} = 1540 \,\mathrm{MeV}$ [2], we find that $g_{KN\Theta^+_+} = 3.78$ and $g_{KN\Theta^+_-} = 0.53$. If one takes a different width for $\Gamma_{\Theta \to KN}$, the coupling constant scales as a square root of the width. As for the unknown coupling constant $g_{K^*N\Theta}$, we follow Ref. [3], *i.e.*, $g_{K^*N\Theta} = \pm |g_{KN\Theta}|/2$. The tensor coupling constant $g_{K^*N\Theta}$ is then fixed as follows: $g_{K^*N\Theta}^T = \pm |g_{KN\Theta}|$ as in Ref. [4]. Since the sign of the coupling constants cannot be fixed by SU(3) symmetry, we shall use both signs [3]. We employ the values of the KNY and K^*NY coupling constants referring to those from the new Nijmegen potential (averaged values of models NSC97a and NSC97f) [6] as well as from the Jülich–Bonn YN potential (model \tilde{A}) [7]. For the Nijmegen potential we introduce the monopole-type form factor [8, 4] in the form of

$$F(q^2) = \frac{\Lambda_1^2 - m^2}{\Lambda_1^2 - t} : \Lambda_1 = 1.0 \text{GeV},$$
(2)

where m and t are the meson mass and a squared four momentum transfer, respectively. As for that of the Jülich–Bonn potential, we make use of the following form factor taken from Ref. [7]:

$$F(q^2) = \frac{\Lambda_2^2 - m^2}{\Lambda_2^2 + |\mathbf{q}|^2},\tag{3}$$

where $|\mathbf{q}|$ is the three momentum transfer. In this case, we take different values of Λ_2 for each KNY vertex as follows [7]: $\Lambda_{KN\Theta} = \Lambda_{K^*N\Theta} = 1.0 \text{ GeV}, \ \Lambda_{KN\Lambda} = 1.2 \text{ GeV}, \ \Lambda_{K^*N\Lambda} = 2.2 \text{ GeV}, \ \Lambda_{KN\Sigma} = 2.0 \text{ GeV}, \ \text{and} \ \Lambda_{K^*N\Sigma} = 1.07 \text{ GeV}.$ We have found that $\sigma_{np \to Y^0\Theta^+_+} \gg \sigma_{np \to Y^0\Theta^+_-}$ and $\sigma_{np \to \Lambda\Theta^+} \gg \sigma_{np \to \Sigma^0\Theta^+}$. Concerning the

We have found that $\sigma_{np\to Y^0\Theta^+_+} \gg \sigma_{np\to Y^0\Theta^+_-}$ and $\sigma_{np\to\Lambda\Theta^+} \gg \sigma_{np\to\Sigma^0\Theta^+}$. Concerning the absolute value of the total cross sections, it should be pointed out that they may change if a different value of $\Gamma_{\Theta\to KN}$ is used as proportional to it. Here we have used $\Gamma_{\Theta\to KN} = 15$

Figure 1: The total cross sections of $np \to \Lambda \Theta^+_+$ for the two parities (a:P = +1, b:P = -1) in the left two panels. Those of $np \to \Sigma^0 \Theta^+_+$ in the right two panels. The parameter set of the Jülich-Bonn potential is employed with F_1

Figure 2: The total cross sections of $np \to \Lambda \Theta^+_+$ for the two parities (a:P = +1, b:P = -1) in the left two panels. Those of $np \to \Sigma^0 \Theta^+_+$ in the right two panels. The parameter set of the Nijmegenis is employed with F_2

MeV. Recent experiment and analysis indicate narrower widths [9, 10]. For instance, if we take $\Gamma_{\Theta \to KN} \sim 5$ MeV, then the cross sections are reduced by a factor 3. Furthermore, the initial state interaction may change the present estimate. Typically it can reduce the total cross sections by about a factor three as discussed in hyperon productions [11]. At the present point, although there is ambiguity in the theoretical predictions in the total cross sections, they would be useful to obtain information on the properties of the Θ^+ once more data will be available [12].

References

- [1] S. I. Nam, A. Hosaka and H. C. Kim, arXiv:hep-ph/0402138 ro appear in PRD.
- [2] T. Nakano et al. [LEPS Collaboration], Phys. Rev. Lett. 91, 012002 (2003)
- [3] Phys. Rev. C 69, 025202 (2004)
- [4] S. I. Nam, A. Hosaka and H. C. Kim, hep-ph/0401074, to appear in Phys. Lett. B
- [5] F. E. Close and J. J. Dudek, Phys. Lett. B 586, 75 (2004)
- [6] V. G. J. Stokes and Th. A. Rijken, Phys. Rev. C 59, 3009 (1999)
- [7] A. Reuber, K. Holinde and J. Speth, Nucl. Phys. A 570, 543 (1994)
- [8] R. Machleidt, K. Holinde and C. Elster, Phys. Rept. 149, 1 (1987)
- [9] S. Chekanov et al. [ZEUS Collaboration], arXiv:hep-ex/0403051.
- [10] A. Sibirtsev, J. Haidenbauer, S. Krewald and U. G. Meissner, arXiv:hep-ph/0405099.
- [11] C. Hanhart, Phys. Rept. 397, 155 (2004)
- [12] M. Abdel-Bary et al. [COSY-TOF Collaboration], arXiv:hep-ex/0403011.