Exotic Structure of Light Hypernuclei

H. Nemura

Institute of Particle and Nuclear Studies, KEK, Tsukuba 305-0801, Japan

We describe full-coupled-channel *ab initio* calculations among the octet baryons for S = -2 s-shell hypernuclei, ${}_{\Lambda\Lambda}{}^{4}$ H, ${}_{\Lambda\Lambda}{}^{5}_{\Lambda}$ H and ${}_{\Lambda\Lambda}{}^{6}_{\Lambda}$ He. The wave function of a system with strangeness S = -2, comprising A octet baryons, has four isospin-basis components. For example, ${}_{\Lambda\Lambda}{}^{6}_{\Lambda}$ He has four components as $ppnn\Lambda\Lambda$, $NNNN\Sigma$, $NNNN\Sigma$ and $NNN\Sigma\Sigma$. We abbreviate these components as $\Lambda\Lambda$, $N\Xi$, $\Lambda\Sigma$ and $\Sigma\Sigma$, referring the last two baryons. The hamiltonian of the system is hence given by 4×4 components as

$$H = \begin{pmatrix} H_{\Lambda\Lambda} & V_{N\Xi-\Lambda\Lambda} & V_{\Lambda\Sigma-\Lambda\Lambda} & V_{\Sigma\Sigma-\Lambda\Lambda} \\ V_{\Lambda\Lambda-N\Xi} & H_{N\Xi} & V_{\Lambda\Sigma-N\Xi} & V_{\Sigma\Sigma-N\Xi} \\ V_{\Lambda\Lambda-\Lambda\Sigma} & V_{N\Xi-\Lambda\Sigma} & H_{\Lambda\Sigma} & V_{\Sigma\Sigma-\Lambda\Sigma} \\ V_{\Lambda\Lambda-\Sigma\Sigma} & V_{N\Xi-\Sigma\Sigma} & V_{\Lambda\Sigma-\Sigma\Sigma} & H_{\Sigma\Sigma} \end{pmatrix},$$
(1)

where $H_{B_1B_2}$ operates on the B_1B_2 component, and $V_{B_1B_2-B'_1B'_2}$ is the sum of all possible twobody transition potential connecting B_1B_2 and $B'_1B'_2$ components. In the present calculation, we use Minnesota potential[1] for the NN interaction, D2' for the YN and Nijmegen model D simulated (ND(S)) for the YY interaction.[2] The calculations were made by using stochastic variational method.[3, 4]. This is essentially in same line as was made in Ref. [5] except for the isospin function. The isospin function has four components. Table 1 lists the B_{Λ} and $B_{\Lambda\Lambda}$ values for S = -1 and -2 hypernuclei. The D2' YN potential well reproduces all the B_{Λ} values for A = 3 - 5, S = -1 hypernuclei. Bound state solutions of the $\Lambda\Lambda$ hypernuclei, ${}^{4}_{\Lambda\Lambda}H$, ${}^{5}_{\Lambda}H$ and ${}^{6}_{\Lambda}He$, are obtained. This is a first attempt to explore the few-body problem of the full-coupled channel scheme for A = 4 - 6, S = -2 multistrangeness hypernuclear systems.

The calculations were made using the RCNP SX-5 computer.

	$B_{\Lambda}(^{3}_{\Lambda}\mathrm{H})$	$B_{\Lambda}(^{4}_{\Lambda}\mathrm{H})$	$B_{\Lambda}(^{4}_{\Lambda}\mathrm{H}^{*})$	$B_{\Lambda}(^{5}_{\Lambda}\mathrm{He})$	$B_{\Lambda\Lambda}({}^{4}_{\Lambda\Lambda}{ m H})$	$B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}\mathrm{H})$	$B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}{ m He})$
Calc	0.056	2.23	0.91	3.18	0.107	4.03	7.91
Exp	0.13(5)	2.04(4)	1.00(4)	3.12(2)			7.3(3)

References

- [1] D. R. Thompson, M. Lemere and Y. C. Tang, Nucl. Phys. A286 (1977) 53.
- H. Nemura et al., in Proceedings of the VIII International Conference on Hypernuclear & Strange Particle Physics, to be published in Nucl. Phys. A.
- [3] V. I. Kukulin and V. M. Krasnopol'sky, J. Phys. G:Nucl. Part. Phys. 3 (1977) 795.
- [4] Y. Suzuki and K. Varga, Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems, Lecture Notes in Physics, Vol. m54 (Springer-Verlag, Berlin Heidelberg, 1998).
- [5] H. Nemura, Y. Akaishi and Y. Suzuki, Phys. Rev. Lett. 89 (2002) 142504.