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The chiral sigma model provides good saturation property for nuclear matter and produces
the magic number 28 by pionic correlation in finite nuclei[1]. However, the magic number
appears at N=18 instead of N=20 because the incompressibility is too large (K=650[MeV]) in
this model. There are several possibilities to solve this problem, such as treatments involving
the effect of the Dirac sea, the parity projection, the Fock term, and others. Here, we study
the effect of the Dirac sea in the chiral sigma model for nuclear structure. The chiral sigma
model is a renormalizable model, and it is important to include the Dirac sea in this model.
In the non-chiral model (Walecka model) it is known that the contribution of the Dirac sea is
about 10% to 20% and reduces the incompressibility. We try to include the Dirac sea within
relativistic Hartree approximation in the chiral sigma model[2]. At the first, we calculate
these diagrams shown in Figure 1. Figure 1 (a) is a divergence diagram and Figure 1 (b) is
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Figure 1: Second-order tadpole contributions to the baryon propagator

a finite one. This procedure is not self-consistent, however, where the background particles
are noninteracting. We take the relativistic Hartree approximation (RHA) for the nucleon
propagator. The nucleon propagator with the RHA has the four divergence diagrams. We
must remove these divergence by adding the counter terms. Because the chiral sigma model
has the chiral symmetry, the counter terms need to respect the symmetry[3].

δLCTC = aM2(σ2 + π2) + b(σ2 + π2)2 + c(∂µσ∂µσ + ∂µπ∂µπ). (1)

We obtain the counter terms with the chiral symmetry, but the counter terms remain arbitrary
and the total effective potential has the instability[4]. In addition, the effective mass of sigma
meson increases as the density increases. As a result, a mean field of sigma meson becomes
very small so that an attractive force is very small.

We suppose the new chiral symmetric renormalization (NCSR) which includes the higher-
order counter terms of sigma and pi mesons.

δLNCSR
CTC = aM2(σ2 + π2) + b(σ2 + π2)2

+
c

M2
(σ2 + π2)3 +

d

M4
(σ2 + π2)4 + e(∂µσ∂µσ + ∂µπ∂µπ). (2)



Using these counter terms, we take the adequate renormalization conditions. With this
renormalization, we can remove both the arbitrariness and the divergence. As a result, the
total effective potential becomes stable. We can include the Dirac sea in the chiral sigma
model. As shown in Figure 2, the instability from the nucleon loop contribution becomes very
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Figure 2: The contribution of the nu-
cleon loop as a function of the effective
mass of nulceon.
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Figure 3: The effective potential as a
function of the effective mass of nul-
ceon.

soft, and the energy contribution is similar to that of the non-chiral renormalization (in the
Walecka model) within the physical effective mass (about from 500[MeV] to 800[MeV]). We
expect the similar contribution of Dirac sea in the Walecka model. In addition, the potential
at M∗ = 0 becomes smaller than others so that we can discuss the restoration of the chiral
symmetry. Using this renormalization scheme, we obtain the stable effective potential which
has a minimum point as shown in Figure 3.

We purpose the new chiral symmetric renormalization. This renormalization scheme
has the higher-order terms of sigma and pi mesons. We need these terms to renormalize
completely the non-linear sigma meson interactions. Now we include the contribution of the
nucleon loop, but have not included that of the boson loop yet. As a next step, we include
the loop corrections from both the nucleon and bosons. Because we include the counter terms
which have the higher-order terms of scalar mesons, we should include the higher-order terms
of scalar mesons to the chiral sigma model. It is known that the incompressibility decreases
in a phenomenological model[5]. Now we reconstruct the chiral sigma model which includes
the effect of the Dirac sea.
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