Neutron experiment for the study of Re/Os cosmochronometer

M.Segawa¹, T.Masaki¹, Y.Nagai¹, Y.Temma¹, T.Shima¹, H.Makii³, H.Ueda¹, M.Igashira², T.Ohsaki², T.Shizuma³ and T.Hayakawa³

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

²Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo

152-8550, Japan

³ Japan Atomic Energy Research Institute, 2-4 Shirakatashirane, Toukaimura, Ibaraki 319-1195, Japan

The age determination of the universe has been an interesting subject. It has been considered that the Re-Os pair can be one of good cosmochronometers, since it has unique features as discussed below [1]. Namely, 187 Re is produced by only r-process and the half life of 187 Re is quite long 42.3 ± 1.3 Gyr. However, there are following interesting problems to use the Re-Os pair as a precise cosmochronometer. It is known that 186 Os is the s-only isotope, and therefore ¹⁸⁷Os is produced not only by the decay of ¹⁸⁷Re but also by the slow neutron capture process of 186 Os. Hence, principally if we know the production rate of 187 Os by the s-process neutron capture and the loss rate of ¹⁸⁷Os, we could obtain the amount of the decay product of ¹⁸⁷Re. Moreover, there exists the excited state at 10 keV in ¹⁸⁷Os. The state could be significantly populated at the stellar temperature of about 10^8 K, and therefore 187Os is depleted by the neutron capture process through the excited state [2]. Hence it is very important to find a proper way to correct for the loss rate of ¹⁸⁷Os through the excited state in deducing the age of the Galaxy [3]. In order to correct for the effect, the measurements for neutron capture cross section of ¹⁸⁶Os, ¹⁸⁷Os and ¹⁸⁹Os were made [4] [5]. It is unfortunate that there is a large discrepancy between different data sets. In the present study, we measured the neutron capture cross section of ¹⁸⁶Os, ¹⁸⁷Os and ¹⁸⁹Os for neutrons between 10 and 90 keV by detecting a prompt gamma ray from these reactions using an anti-Compton NaI(Tl) spectrometer. We report preliminary results of these measurements. We have for the first time succeeded to detect discrete gamma ray from the neutron capture reaction of ¹⁸⁶Os, ¹⁸⁷Os and ¹⁸⁹Os at a stellar energy by detection a prompt discrete gamma rays from these reactions (Fig. 1). Data analysis to determine the neutron capture cross section of these Os isotopes is in progress. Using newly obtained data, we hope that we could determine the age of the universe within an uncertainty of one billion year.

Figure 1: Net gamma ray pulse height spectra of ¹⁸⁶Os, ¹⁸⁷Os, ¹⁸⁹Os for 10-90keV neutrons.

References

- [1] D. D. Clayton, Astropys. J. 139, 637 (1964).
- [2] F. Käppeler, Prog. Nucl. Part. Phys. 43, 419 (1999)
- [3] W. A. Fowler, Revs. Modern Phys, Vol. 56, No. 2, Part 1, April 1984
- [4] R. R. Winters, Astron. Astrophys. 171, 9 (1987)
- [5] J. C. Brown, Phys. Rev. C. 23, 1434 (1981)