Photoproduction of K^* for the study of $\Lambda(1405)$

T. Hyodo¹, A. Hosaka¹, M. J. Vicente Vacas² and E. Oset²

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

²Departmento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de

Investigación de Paterna, Aptd. 22085, 46071 Valencia, Spain

The photo-induced K^* vector meson production as shown in Fig. 1 is investigated for the study of the $\Lambda(1405)$ resonance [1, 2]. This reaction is particularly suited to the isolation of the second pole in the $\Lambda(1405)$ region which couples dominantly to the $\bar{K}N$ channel. We obtain the mass distribution of the $\Lambda(1405)$ which peaks at 1420 MeV, and differs from the nominal one (Fig. 2). Combined with several other reactions, like the $\pi^- p \to K^0 \pi \Sigma$ which favours the first pole, this detailed study will reveal a novel structure of the $\Lambda(1405)$ state.

Figure 1: Feynman diagram for the reaction. M and B denote the meson and baryon of ten coupled channels of S = -1 meson-baryon scattering.

Figure 2: Invariant mass distributions of $\pi^0 \Sigma^0$ (Thick solid), $\pi^+ \Sigma^-$ (Dashed), $\pi^- \Sigma^+$ (Dash-dot-dotted), $\pi^0 \Lambda$ (Dash-dotted) and $(\pi^+ \Sigma^- + \pi^+ \Sigma^-)/2$ (Thin solid) in units of [nb/MeV]. Initial photon energy in Lab. frame is 2500 MeV ($\sqrt{s} \sim 2350$ MeV, threshold of $K^* \Lambda(1405)$).

References

- [1] T. Hyodo, A. Hosaka, M. J. Vicente Vacas and E. Oset, Phys. Lett. B 593, 75 (2004).
- [2] T. Hyodo, A. Hosaka, M. J. Vicente Vacas and E. Oset, nucl-th/0404031.