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The dual superconductor model [1] was invented to explain the confinement of color in non-Abelian gauge
theories. The model assumes that the non-Abelian vacuum can be considered as a medium of Abelian monopoles.
Infrared properties of the non-Abelian gauge theory in the confinement phase are governed by the monopole
condensate while in the deconfinement phase the condensate is absent. The Abelian monopoles are singular
configurations of the gluonic field. These configurations can be identified with the help of the Abelian projection
method [2]. Numerical simulations show that the dual superconductor is realized in four dimensional non-
Abelian gauge theories [3].

We discuss non-perturbative features of three-dimensional SU(2) gauge model which has a relation to high-
temperature QCD. The most interesting features are the confinement of color and the mass gap generation
(analogues of, respectively, ”the spatial confinement” and ”the magnetic screening”, in the 4D SU(2) gauge
model at T 6= 0). The Abelian monopole dynamics of this model was previously investigated both by analytical
(phenomenological) [4] and numerical [5] approaches. Taking into account the success of the monopole confine-
ment mechanism in 4D [3] it is natural to expect that in 3D SU(2) model the dominant contributions both to
the string tension and to the screening mass is given by the Abelian monopoles. We try to describe the action
of the Abelian monopoles by a Coulomb gas model. This choice is motivated by the well-known analytical
result [6] in the 3D Georgi-Glashow model:
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Here xa and qa are, respectively, the position and the charge (in units of a fundamental magnetic charge, gM )
of ath continuum monopole. ζ is the fugacity parameter and the Coulomb interaction is represented by the
inverse Laplacian D, −∂2

i D(x) = δ(3)(x). To match the continuum model with the lattice SU(2) model, we use
the method of blocking from continuum (BFC) [7, 8]. The values of the parameters of the Coulomb gas model
in the continuum limit, Eq.(1), can be obtained by fitting the numerical results for monopole density by the
analytical prediction.

We have shown that the dynamics of the Abelian monopoles in the three–dimensional SU(2) gauge model
can be described by the Coulomb gas model. Using a novel method, called the blocking of the monopoles
from continuum, we calculated the monopole density and the Debye screening mass in continuum using the
numerical results for the (squared) monopole charge density. The self-consistency of the results was checked by
the independent analysis of the lattice monopole action. We conclude that the Abelian monopole gas in the
3D SU(2) gluodynamics is not dilute. This conclusion agrees qualitatively with observation [9] made at RHIC
that in the quark gluon plasma at high temperatures the gluons are not weakly interacting. Nevertheless, the
continuum values of the monopole density (ρ = 0.174(2)σ3/2) and the Debye screening mass (MD = 1.77(4) σ1/2)
– obtained with the help of the dilute monopole gas model – are consistent within the accuracy of 25% with
the known data obtained from independent measurements.

The numerical simulations have been performed on NEC SX-5 at RCNP, Osaka University.
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