The kappa meson in lattice QCD

T. Kunihiro,¹ S. Muroya,² A. Nakamura,³ C. Nonaka,⁴ M. Sekiguchi⁵ and H. Wada⁶

¹YITP, Kyoto University Kyoto, 606-8502, Japan

² Tokuyama University, Shunan, 745-8566, Japan

³IMC, Hiroshima University, Higashi-Hiroshima 739-8521, Japan

⁴Department of Physics, Duke University, Durham, NC 27708-0305, USA

⁵Faculty of Engineering, Kokushikan University, Tokyo 154-8515, Japan

⁶Political Science and Economics, Kokushikan University, Tokyo 154-8515, Japan

The kappa (κ) meson is a I=1/2, $J^P=0^+$ scalar meson with strangeness. If the non-strange scalar meson sigma (σ), exists, it is natural to expect that the κ also exists. The existence of the σ has become plausible [1], and there have been many experimental and theoretical activities including lattice analyses[2]. Recently, two groups reported a candidate of the κ . In Ref.[3], a low mass scalar $K\pi$ resonance is reported. We, the SCALAR Collaboration, have started a lattice investigation to clarify whether this experimentally observed particle can be reproduced on the lattice.

We work with the operator $\bar{\psi}_s \psi_u$. The κ^+ propagator is then composed of u and \bar{s} lines. We treat the s quark as a valence, while u and d quarks are dynamical. We employ Wilson fermions and the plaquette gauge action. We perform a full QCD simulation on $8^3 \times 16$ lattice by the hybrid Monte Carlo method. We generate gauge configurations for three hopping parameter, $\kappa = 0.1846$, 0.1874 and 0.1891 at $\beta = 4.8$. These values are taken from Ref.[4] (CP-PACS). In Table 1, we show mass rations of π and ρ obtained here and from CP-PACS, together with the number of configurations used. In this measurement we determine the critical hopping value as $\kappa_c = 0.195(3)$. The lattice spacing determined from rho meson mass is a = 0.207(9) fm.

For the *s* quark hopping parameter, we used 0.1835, 0.1840 and 0.1845. With these values, we calculate the *kappa* propagators on three sets of configurations with different *u* and *d* quark hopping parameters. In Table 2, we give the mass rations of κ and K^* . For each *s* quark hopping parameter, we extrapolate masses of *K*, K^* and κ mesons to the critical value of (*u* and *d*) hopping parameter. We conclude that for all three values of the *s* quark hopping parameter the κ meson mass is around twice that of K^* .

This work is performed by SX5 at RCNP Osaka University and SR8000 at KEK.

References

- [1] Particle Data Group, S. Eidelman et al., Phys. Lett. B592, 1 (2004)
- [2] For example, see Possible existence of the sigma-meson and its implications to hadron physics, KEK Proceedings 2000-4, Soryushiron Kenkyu (kyoto)102, E1 (2001); SCALAR Collaboration, Nucl. Phys. B (Proc. Suppl.) 106, 272 (2002); S. Prelovsek and K. Orginos, Nucl. Phys. B (Proc. Suppl.) 119, 822 (2003); SCALAR Collaboration, Phys. Rev. D70, 034504 (2004).
- [3] E. M. Aitala et al., [E791 Collaboration], Phys. Rev. Lett. 89, 121801 (2002); J. Z. Bai et al., [BES Collaboration], hep-ex/0304001.
- [4] S. Aoki, et al., Phys. Rev. D60, 114508 (1999).

/	0				
κ	0.1846	0.1874	0.1891		
statistics $^{1)}$	1510	1040	760		
$m_\pi/m_ ho^{-2)}$	0.8291(12)	0.7715(17)	0.7026(32)		
$m_\pi/m_ ho^{-3)}$	0.828(3)	0.766(4)	0.703(6)		
¹⁾ number of configurations, ²⁾ CP-PACS, ³⁾ our result					

Table.1 π and ρ rations together with those from CP-PACS

Table.2 Mass ratio m_{κ}/m_{K^*}					
hopping parameter for u/d	hopping parameter for s				
	0.1835	0.1840	0.1845		
0.1846	2.393(49)	2.403(50)	2.412(51)		
0.1874	2.312(37)	2.315(38)	2.329(39)		
0.1891	2.255(51)	2.262(52)	2.269(52)		

Table.2 Mass ratio m_{κ}/m_{K^*}